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Fig. 1. There are four major views in MAQUI: (a) the workspace, (b) the frequent pattern view (c) the attribute-value pair view and
(d) the raw sequence view. (1) As the analyst clicks on the rectangular region between HOME and OFFICE, it becomes the current
focus and is highlighted in yellow. The frequent pattern view, the attribute-value pair view and the raw sequence view are subsequently
updated. (2) The analysts select the SUBWAY — SUBWAY — SUBWAY pattern and use it to split up the segments between HOME and
OFFICE. The bottom panel is in turn created.

Abstract—Exploring event sequences by defining queries alone or by using mining algorithms alone is often not sufficient to support
analysis. Analysts often interweave querying and mining in a recursive manner during event sequence analysis: sequences extracted
as query results are used for mining patterns, patterns generated are incorporated into a new query for segmenting the sequences, and
the resulting segments are mined or queried again. To support flexible analysis, we propose a framework that describes the process of
interwoven querying and mining. Based on this framework, we developed MAQUI, a Mining And Querying User Interface that enables
recursive event sequence exploration. To understand the efficacy of MAQUI, we conducted two case studies with domain experts. The
findings suggest that the capability of interweaving querying and mining helps the participants articulate their questions and gain novel

insights from their data.

Index Terms—Sequential pattern mining, temporal query, event sequence exploration
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1 INTRODUCTION

The collection and analysis of event sequence data occurs in many
domains. For instance, e-commerce companies seek to understand
customer behaviors from clickstream data and inform marketing de-
cisions [36]. In the healthcare domain, electronic health records are
sources of information that can provide insights into whether recom-
mended guidelines are followed [43].

The sheer volume and complexity of event sequences present many
challenges in the visual analysis of such data. Visualization techniques
alone are often not scalable to provide an overview of the data [28]. To
summarize large scale event sequence data, sequential pattern mining

* Po-Ming Law, and Rahul C. Basole are with Georgia Institute of Technology.
E-mail: {pmlaw, basole} @gatech.edu

e Zhicheng Liu, and Sana Malik are with Adobe Research.
E-mail: {leoli, sanmalik} @adobe.com

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

algorithms extract linear patterns using metrics such as frequency and
profit [12]. However, using only mining algorithms has its limitations.
Without any human input, the mined patterns are not always useful or
interesting [25]. In addition, contextual information, such as where the
patterns happen in the original sequences, is lost [18]. An interface that
only supports user-defined gueries, on the other hand, enables dynamic
formulation of questions the analysts have in mind, but risks missing
unexpected patterns in the data.

To overcome these limitations, recent works propose to combine
querying with mining for event sequence exploration. (s|qu)eries [45]
is primarily a querying tool based on regular expressions, but it also
provides a ranked list of events for inspection. DecisionFlow [16, 18]
best demonstrates the idea of combining mining and querying. It
allows analysts to query for sequences that match specified constraints,
perform pattern mining on the retrieved sequences and segments, and
then explore the results with interactive visualizations.

While these approaches have been successful in supporting flexible
exploratory analysis of event sequence data, the recursive nature of
event sequence exploration has not received adequate attention. Our
conversations with event sequence analysts reveal that the analytic



workflows do not always follow a querying— mining—s visualization pipeline.
Instead, Querying and mining are often interwoven in a recursive man-
ner: sequences retrieved from a query are used as the input for a mining
algorithm, the mined patterns may then be used to segment the se-
quences, and some of the resultant segments in turn serve as the input
for follow-up querying or mining. During such processes, it is difficult
for analysts to flexibly articulate queries, specify which part of the
dataset should be mined, and keep track of the context in which the
current exploration happens.

To address these complexities, we propose a framework that de-
scribes the process of interwoven querying and mining in recursive
event sequence exploration. The framework introduces the concepts
of analytic focus and context. Its novelty lies in articulating how a set
of atomic user actions can be combined to modify the analytic focus
and context in continuous loops. Grounded on the framework, we de-
signed MAQUI, a Mining And Querying User Interface for recursive
event sequence exploration. MAQUI employs a panel-based interaction
design that is tightly coupled with the concepts in the framework. To
demonstrate the efficacy of MAQUI, we conducted two case studies
with marketing analysts and a health informatics professional. The
capability of interweaving querying and mining was well-received by
the participants and was able to help them find novel insights from their
data. In particular, our work makes the following contributions:

1. A framework that depicts how a set of atomic user actions can
be combined to support interwoven querying and mining in a novel
recursive manner. This framework was grounded in an investigation of
the analytic questions of clickstream analysts.

2. MAQUI, a visual analytics system that employs novel interaction
designs to support interwoven querying and mining in a recursive
manner.

2 RELATED WORK

Combining mining with querying for event sequence exploration is not
a new idea. However, there has been no systematic investigation into
how they should be combined to scaffold analysts’ exploration. Exist-
ing work that investigates querying and mining techniques for event
sequence mainly falls into two categories: mining-centric interfaces
and query-centric interfaces. Mining-centric interfaces aid in discover-
ing interesting patterns in event sequence data by utilizing advanced
pattern mining algorithms; they offer limited or no query capabilities.
On the other hand, query-centric interfaces empower analysts to create
complex queries to extract event sequences of interest; they often pro-
vide limited support for mining patterns from data. Our work lies at the
intersection of both lines of research.

2.1 Mining-Centric Interfaces

Mining-centric interfaces can range from fully automatic pattern mining
to semi-automatic pattern mining.

Fully automatic pattern mining is a completely linear process during
which analysts apply a mining algorithm and browse a long list of pat-
terns generated by the algorithm [38]. Fournier-Viger et al. [12] offer a
comprehensive survey on sequential pattern mining. Two sequential pat-
tern mining algorithms have been widely adopted by the visualization
community to extract patterns from event sequences: the SPAM algo-
rithm (SPAM) [3] and the VMSP algorithm (VSMP) [13]. SPAM [3]
uses a smart bitmap representation to efficiently generate frequent pat-
terns. Albeit efficient, SPAM may produce a large number of patterns,
creating difficulty in browsing through them. VMSP [13] was subse-
quently developed to generate more compact patterns to reduce the
number of patterns presented to analysts. Much research has also been
devoted to developing visualization techniques for frequent patterns,
shielding users from the tedious process of browsing long lists of them.
FP-Viz [21] is an early work that visualizes frequent patterns using the
Sunburst visualization. Frequence [32] visualizes the patterns produced
by a modified SPAM algorithm using a Sankey-based visualization.
Peekquence [23] focuses on visualizing the co-occurrence relationship
between event types and patterns. Coreflow [25] extracts branching
patterns and visualizes them as icicle plots. Liu et al. [26] identified

four levels of granularity for visualizing and analyzing clickstream data.
Recently, Chen et al. [7] proposed a mining algorithm based on the
minimal description length principle to construct an overview of event
sequences while reducing information loss.

In semi-automatic pattern mining, a system provides mechanisms
for interacting with a pattern mining algorithm. For instance, Xin et
al. [44] developed a technique to allow analysts to rank a small set
of patterns generated by a mining algorithm. To help analysts rapidly
explore interesting patterns, the patterns are re-ranked based on user
interests inferred from the interactions. Vrotsou et al. [38] developed
an interactive technique that lets analysts mine interesting patterns in
a stepwise manner. To tackle the long running time required to gen-
erate sequential patterns, Progressive Insights [37] allows analysts to
interact with the partial results generated by SPAM to abort the process
or prioritize subspaces of interest. The most relevant mining-centric
interfaces only offer limited query capabilities for event sequence ex-
ploration. Parthasarathy et al. [31] proposed computational methods for
efficiently mining and querying an event sequence database when the
database is updated on a regular basis but they did not consider a user
interface. Chronodes [35] and TimeStitch [34] allow analysts to use
patterns generated by SPAM as focal points. For example, analysts can
explore the sequences that occur between a pattern A and a pattern B.
However, complex queries such as setting time gap constraints between
two patterns and segmenting the dataset by record attributes are not
supported. DecisionFlow [16] allows analysts to specify an ordered list
of event types as a query. A variant of DecisionFlow [18] empowers
analysts to mine frequent patterns from a segment between event types.
Its primitive query capability, however, offers limited expressiveness for
retrieving event sequences, restricting the variety of questions analysts
can ask. As illustrated by research in query-centric interfaces, ana-
lysts have diverse questions that require expressive querying techniques
to answer. Our work attempts to complement mining by endowing
analysts with the capability of creating expressive queries.

2.2 Query-Centric Interfaces

Contrary to mining-centric interfaces, query-centric interfaces offer
advanced capabilities for defining event sequences of interests. The
event sequences extracted are often visualized to help analysts gain
insights into the data. The earliest work in this area includes Pattern
Finder [11, 33], LifeLines2 [39] and LifeFlow [40]. With Pattern
Finder [11,33], users can specify queries using events, event sets, event
attributes, and time spans. Both LifeLines2 [39] and LifeFlow [40]
allow users to align event sequences by choosing an event type to be
the alignment point. The aligned sequences are then visualized using a
simple horizontal timeline or aggregated into a visualization similar to
icicle plots. Building on LifeLine2 and LifeFlow, Monroe et al. [28,29]
developed EventFlow that provides advanced capability for searching
event sequences. They demonstrated through real-life use cases (e.g.,
[4,6,27]) that complex queries are of importance for answering real-life
questions by real users. Driven by this line of research, advanced query
capabilities are introduced into other applications [8,9,17,19,20,22,42,
46]. For instance, Tempo [17], COQUITO [22] and CAVA [46] enable
analysts to express complex queries for iterative cohort construction.
PeerFinder [9], Similan [42] and Similan2 [41] allow users to search
for event sequences that are similar to a target record. Finally, there is a
recent trend in developing even more expressive techniques for querying
event sequences based on regular expression [5,45]. An example is
EventPad [5], which compresses multivariate event sequences by using
user-defined regular expression rules. The most relevant query-centric
interface to our work is (s|qu)eries [45]. With (s|qu)eries, users can
search for sub-event sequences using complicated regular expression-
based queries. Similar to our work, it enables users to mine frequent
events in selected sub-event sequences and incorporate these frequent
events into subsequent queries. However, (s|qu)eries does not support
pattern mining algorithms, limiting users to inspecting frequent events
but not frequent patterns. With query-centric interfaces, analysts risk
missing unexpected patterns. We strive to complement querying by
utilizing sequential pattern mining algorithms that can generate patterns
analysts would have missed if they have to find patterns manually.



Table 1. Sample tasks collected from clickstream data analysts. The
action column illustrates how analysts can accomplish the tasks by
combining querying and mining.

Action Task

Querying— Mining Task: Compare behaviors between groups of users. (T1)

Example question: Is the common path of user group A
different from that of user group B? (Q1)

User Group A oo > E}_E}_D
: Pattern A
sercowp8 | O-OFOO [ > E}_D
: Pattern B
Querying Mining

Querying— Mining Task: Study user paths before/after a milestone. (T2)

Example question: For those who purchased product X,
what is the common path that leads to the purchase? (Q2)

Patterns

Mining

Mining— Querying Task: Identify the characteristics of event sequences that do

not contain a known pattern. (T3)
Example Question: How else are they getting to the “Con-
tact Us” page? At what rate? (Q3)

“Contact Us” page
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3 IDENTIFYING USAGE PATTERNS FROM
ANALYSTS’ QUESTIONS

The motivation for interwoven querying and mining comes from our
long-term collaborations with analysts working in a large software
company. The company collects massive amount of clickstream data of
visitor behaviors on its websites. Analysts would like to draw insights
from this data to understand potential website usability issues and relate
customers’ behaviors to their purchase decisions. Table 1 lists some
of the recurring tasks the analysts want to perform and the example
questions related to these tasks.

These questions suggest some of the common analytic needs and
workflows found in a real-world problem domain. To understand
whether the findings can be generalized to domains other than click-
stream data, we surveyed the literature to verify these findings. Two
major observations were identified:

Querying and mining are often interwoven recursively. Analysts
often want to create queries to retrieve sequences of interest and apply
a mining algorithm to extract the common paths (querying—mining). For
instance, to address Q1, analysts divide the dataset by user groups into
different sets and mine frequent patterns from each set. The analysis
often does not stop here. After mining some patterns, analysts may use
them to create a subsequent query (mining—querying). Prior work also
shows that event sequence analysts often use the answer of a previous
question to build a new question [45] and it verifies our observation.
For another example of mining— querying, answering Q3 requires analysts
to first mine the common paths before visitors reach the “Contact Us”
page and use a common path to retrieve the sequences that eventually

reach the “Contact Us” page but do not get there via that common path.
The common path mined becomes part of the new query. Analysts
may then recursively perform the querying—mining Or mining— querying
operations on the event sequences retrieved.

Advanced query capabilities are essential. The querying— mining ques-
tions in Table 1 hints on analysts’ diverse needs to query event se-
quences. For Q1, the analyst wants to segment the dataset by user
groups. To answer Q2, analysts need to define the sequence of events
involved in purchasing a product. This sequence (the purchase mile-
stone) may contain a single event or multiple events. After defining the
purchase milestone, analysts extract the event sequences that contain
the milestone and inspect only the segments that occur before the mile-
stone. Articulating these queries can be challenging without advanced
query capabilities. Research in visual temporal queries (e.g., [22,28])
and the recent attempt to adopt regular expression to enhance the expres-
siveness of event sequence query language (e.g., [5,45]) corroborate
this observation. Hence, the capabilities to create expressive queries
is not only desirable but also essential for answering analysts’ diverse
questions.

Many tools are available to the analysts, ranging from simple next
event/previous event visualization dashboards to script-based mining
tools. The lack of integration between these tools, however, impedes
recursive exploration. Analysts may issue a query through a graphical
user interface or writing in SQL, but the results will then need to
be exported and saved as files for further mining operations. To use
the mined patterns as input for further analysis, additional custom
scripts must be written to transform the saved data files. The process
is cumbersome and it is easy to lose context of the analysis. It is our
goal to design an integrated exploration environment that interweaves
querying with mining and provides expressive querying capabilities.
To do so, we need a conceptual tool to help us think about the recursive
process involved in such explorations.

4 A FRAMEWORK OF INTERWOVEN QUERYING AND MINING

Based on the analysis of user tasks in Section 3, we propose a frame-
work that describes the dynamics of the atomic user actions in recursive
exploration of event sequences. While the atomic user actions are
grounded in prior research in event sequence exploration, we contribute
to prior art by proposing the new concepts of analytic focus and context
(Sec. 4.2), and how querying and mining are interleaved as analysts
refine the context and focus using the atomic user actions (Sec. 4.3).

To facilitate discussion, we use a dataset on Foursquare check-ins
as a running example. Foursquare is a location sharing service that
allows users to “check-in” at different places to share their locations
with friends. Our dataset contains check-ins in New York City (NYC)
and Tokyo (TKY) in May 2012 .

4.1 Data Model

We define an event as a set of attribute-value pairs: E; =
{A1 =vi,Ay =V, ... ,Aj=v;}. In the Foursquare dataset, there
are 141,220 events (i.e. check-ins). Each event consists of four event
attributes: Venue (with a set of possible values such as Coffee shop,
Home, and Bus stop), City (NYC or TKY), UserlD and Timestamp (exact time
when the check-in occurred). An example event would be {Venue=Bar,
City=NYC, UserlD=JohnSmith, Timestamp= 05/12/2012 20.'30:05}.

An event sequence is an ordered list of events: S; = [E1, Ep, ..., Ey].
Given all the check-ins in the dataset, we can group the events by UserlD
and order them by Timestamp to form event sequences. Each event
sequence has a number of record attributes that describe the properties
of the sequence. Record attributes can be domain-independent such as
PathLength (number of events) and TimeSpan, or domain dependent such
as CitiesVisited (with possible values being NYC, TKY and Both NYC and TKY)

A segment S, = [E,, Epy1,...,Ey) of an event sequence S; =
[El,E, ..., Ef] is an event sequence contained in S;, where m > 1 and
n < k. A pattern is an ordered list of event attribute-value pairs found
in a set of event sequences, where the attribute-value pairs do not have
to be contiguous in the original sequences. For example, the pattern

1https ://sites.google.com/site/yangdingqi/home/foursquare-dataset
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Bus stop—Work—Bus stop—Home for the attribute Venue may be found in
many sequences, but in certain sequences, there may be other venues
in between Venue=Work and Venue=Bus stop. Our model does not consider
patterns with a mixture of different attributes.
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Fig. 2. A Framework of Interwoven Querying and Mining.

4.2 Analytic Focus and Context

Figure 2 provides a visual summary of our framework. Data com-
ponents are colored in gray, and user actions are highlighted in blue.
The blue arrows indicate the transformation between data components
through user actions.

A focus is a set of segments that is the current target of analysis. A
focus situates in a context, which is a larger set of event sequences that
the focus is part of. Recursive exploration keeps redefining the focus
set and the context so that analysts can ask questions and gain insights
on the part of the dataset they are interested in.

For example, we may want to analyze the Foursquare check-in
segments before an event with the attribute-value pair Venue=Train Station.
This set of segments constitutes the current focus, highlighted in yellow
in Figure 3. This focus is shown in a larger context, which also includes
a set of segments after the Venue=Train Station event, and a set of sequences
that do not contain a Venue=Train Station event.

Simply put, the focus is a subset of the context. At any time, analysts
can select a set of segments in the context to make it the focus of
analysis. Moreover, the notions of a focus and a context are relative:
a focus may be drilled down to become the context for a subsequent

focus, and thus contexts can be multi-level or nested.
Segments before TRAIN STATION Segments after TRAIN STATION

Sequences that do no contain TRAIN STATION
38003 38003

14965

Start TRAIN STATION End

Focus (highlighted in yellow)

Context

Fig. 3. Afocus (in yellow) is a set of segments currently being analyzed. It
resides in a larger context which may include additional sets of segments.

4.3 Atomic Actions for Refining Focus and Context

In our framework, users can take the following actions to refine and
transform the analytic focus and context. For each action, we specifty
whether the action is focus-only (i.e. applicable to the set of sequences
in focus) or context-wide (i.e. applicable to one or more sets of se-
quences).

Search for event attributes or patterns (context-wide). Analysts often
need to look for a particular event or pattern they have in mind during
the analysis. For example, in Google Analytics [2], analysts search
for events to create a conversion funnel which describes the steps
for a visitor to become a customer on an e-commerce website. In
EventPad [5], a primary task is to search for events to specify patterns
in regular expressions.

38003 38003

5124
1879

Start SUBWAY TRAIN STATION End

14965 14965

1250

start SUBWAY TRAIN STATION

Fig. 4. (a) Inserting Venue=Subway before Venue=Train Station in Figure 3.
(b) Splitting the focus in Figure 3 by Venue=Subway.

Insert/Remove event attributes or patterns (context-wide). Analysts
often insert an event into an existing pattern, which will update the
entire context. For example, we may insert a Venue=Subway event before
the Venue=Train Station event in Figure 3. This action causes the entire
context to be recomputed, resulting in Figure 4a. The insert action
is often used in exploratory specification of a pattern. An example
use case is conversion funnel analysis in e-commerce using tools such
as Google Analytics [2] and Adobe Analytics [1]. The event can be
removed to restore to the previous state in Figure 3.

Mine event attributes or patterns (focus-only). When analysts do not
have a firm idea of what to expect in the focus, they can use a mining
algorithm to extract frequent event attributes and frequent patterns.
At any point in time during their analysis, analysts can only perform
mining on one set of segments, which is the focus. The mine action
thus does not apply to contexts.

Split/Merge event sequences (focus-only). Analysts can modify the
focus by splitting or merging the sequences using the events or patterns
obtained from the search or mining actions. For example, we may want
to split the focus in Figure 3 by a Venue=Subway event. The outcome
of the split is shown in Figure 4b. The original focus is divided into
a set of segments before and after the Venue=Subway event, and a set of
segments that do not contain the Venue=Subway event. The split action is
often used for drill-down analysis of a set of segments. The resulting
segments can be merged by removing the Venue=Subway event.

Specify record attributes (context-wide). To make the analysis more
manageable, analysts often want to examine a subset of the sequence
data by specifying the properties of the sequences for analysis. For
example, they may not care about short sequences and want to focus on
sequences with a relatively large value for the record attribute PathLength.
To be able to precisely specify what kind of sequences they want to
analyze, they need to see the distributions of different record attributes.

Filter sequences (context-wide). Once the analysts have specified the
properties of sequences to explore, they can use that specification to
filter the sequences. The filtering action can impact both the context
and the focus as the focus is part of the context.

4.4 Recursive Loops

The atomic actions in the framework (search-insert/remove, mine-
split/merge, specify-filter) recursively transform the focus and the con-
text. The output of the transformation becomes the input of the next
action, thereby forming a recursive loop. Recursive event sequence
exploration is supported by flexibly combining these atomic actions.
Users could start by searching and splitting, then perform mining on
the selected focus — such usage pattern is seen in systems like Deci-
sionFlow [16]. They could also start by mining, asking the system to
produce frequent events, then use a frequent event to split the focus.

5 MAQUI: A MINING AND QUERYING USER INTERFACE
FOR RECURSIVE EVENT SEQUENCE EXPLORATION

Even with a clear idea about how mining and querying can be interwo-
ven to support recursive event sequence exploration, there are numerous
ways to design a system to realize the framework. Based on the litera-
ture and our conversations with the analysts, we identified the following



design considerations:

C1. Reducing visual clutter. Visualizations of event sequences often
suffer from severe visual clutter [26,28]. As noted by Chen et al. [7],
there is often a trade-off between visual clutter and information content
in a visualization. In the visual representation, low-level details of
the event sequences should be abstracted away to reduce visual clutter
while enough information about various aspects of the event sequences
should be provided to analysts.

C2. Offering expressive yet intuitive query capabilities. Expressive-
ness is a desirable characteristic of a query language. Yet, intuitiveness
is often compromised while striving for expressiveness. For instance,
regular expression is a highly expressive language for querying event
sequences [5,45] but regular users may not have a good sense of how
the underlying logic works. The system’s query capabilities should be
designed in way so that it is expressive enough yet intuitive.

C3. Providing context for the current focus. During recursive ex-
ploration, analysts mine event attributes or patterns from the current
focus. These event attributes or patterns may subsequently be used for
splitting the current focus. Hence, event sequences are repeatedly split
and merged to produce different segments during recursive analysis.
Conceivably, analysts can easily get lost when many segments are pro-
duced. The interface should help analysts understand the context in
which the current analysis focus resides.

5.1 System Overview

MAQUI has four major views (Fig. 1): (a) the workspace, (b) the
frequent pattern view, (c) the attribute-value pair view, and (d) the
raw sequence view. The workspace consists of a collection of panels.
Each panel (Fig. 5) corresponds to a context, and contains a top bar,
a flow visualization and a timeline. At the beginning of the analysis,
the workspace has only one panel, showing the entire dataset as the
context (Fig. 5). The start and end nodes in the flow visualization
represent the first and last events in all event sequences respectively.
The number above the start and end nodes indicates the total number
of event sequences in the dataset. The timeline displays the average
duration and average number of events between the starting and ending
points of all the event sequences.

Filters (38003/38003)

Top bar [ Contect: (St Ena
38003 38003

Flow
Visualization

6 hours

Timeline [ Surt End

Fig. 5. Each panel in the workspace consists of the top bar, the flow
visualization and the timeline.

During exploratory analysis, analysts can add multiple events to the
flow visualization. For example, a Venue=Home event and a Venue=0Office
event are added to the top panel in Figure 1a. Adding too many events
to the flow visualization will reduce its legibility. To avoid visual
clutter, MAQUI employs a multi-panel design (C1). Analysts can
create multiple panels in the workspace by clicking on .

The multi-panel design further facilitates cohort comparison. For
instance, in Figure 12a-b, the analyst is comparing the routines between
Americans and Japanese using two panels (a detailed usage scenario is
described in Sec. 6). She creates the filter to extract

the check-ins in NYC (Fig. 12a) and the filter to
extract the check-ins in Tokyo (Fig. 12b).

To support comparison of cohorts, MAQUI allows users to adjust the
positions and heights of the colored nodes so that they reflect duration
and number of sequences: by clicking on [/, the distance between two
nodes encodes the duration between two events (Fig. 6b); by clicking
on [ 1], the height of a node encodes the number of event sequences that
contain the event (Fig. 6¢). Analysts can also click on [2] to encode the
distance between two nodes as the average number of events between
the two events (Fig. 6d). By default, the positions and heights of the

a  Original: height of a node and distance between nodes are distorted.

Context: [Start End ers (380C

38003)
38003 38003

4162
730

36 hours 47 hours 6.3 hours

b After dlicking |—|: distance between nodes encodes the time between two milestone events.
38003 38003

4162
730

36 hours 47 hours 63 hours

(a}

After clicking | 1 |: node height encodes the number of sequences that have the milestone event.

38003 38003

4162
730

36 hours 4.7 hours 6.3 hours
Start BAR BAR End

d  After dlicking [ : distance encodes the average number of events between two milestones.

38003 38003

4162
730

Start BAR BAR End
19 events 13 events 28 events

Fig. 6. (a) Node height and horizontal distance between nodes are
originally distorted. Analysts can encode distance between nodes as (b)
average duration or (d) average number of events in between. They can
also encode node height as (c) the number of sequences that contain
the milestone event (the number above a node).

colored nodes in the flow visualization are distorted: distance between
two nodes is equal and height of a node equals a fixed fraction of the
height of the adjacent node on the left (Fig. 6a). The distortion aims to
help analysts select a rectangular region between two nodes by reducing
overlapping between them when the duration between the two events is
too short.

As event names can potentially be very long, they are initially repre-
sented using two to three characters across different views. Analysts
need to hover over the short event names to see the full name. Alter-
natively, analysts can click on to change all the event
names in the interface to a longer version.

5.2 Interactions in Recursive Event Sequence Exploration

In MAQUI, recursive event sequence exploration is supported by al-
lowing analysts to flexibly redefining the analytic focus and context.
Analysts can select a set of segments in a flow visualization to make it
the focus and drill down on the focus to make it a context.

To select a focus, analysts click on a rectangular region that cor-
responds to a set of segments. The selected region is highlighted in
yellow to indicate that it becomes the focus (Fig. 1(1)). This triggers
the three views on the right to display information about the focus. The
frequent pattern view (Fig. 1b) shows a ranked list of frequent patterns
mined from the focus. The attribute-value pair view (Fig. 1c) shows
a ranked list of event/record attributes in the current focus. The raw
event sequence view (Fig. 1d) visualizes the raw sequences in the focus.
The raw sequences help analysts verify the mining results by seeing
whether the generated patterns appear in these sequences.

To drill down on the focus to make it a context, analysts double-click
on a set of segment to create a new panel. This enables analysts to apply
the context-wide user actions on the focus. The context visualization in
the top bar of the new panel provides the bigger context in which the



drill-downed focus situates (C3).

As discussed in Section 4.3, the atomic actions in our framework
can be classified into two types: focus-only (i.e. work only on a set of
sequences only), and context-wide (i.e. work on one or more sets of se-
quences). Context-wide actions are accomplished within the workspace
while focus-only actions are accomplished through the coordination be-
tween the workspace, and the frequent pattern and attribute-value pair
views. The following sections illustrate how these atomic operations
can be done in MAQUIL

5.2.1

Searching and inserting an event attribute. To search within a con-
text in a panel, analysts hover over the timeline, and a + icon is shown.
Analysts can click on # to search for an event attribute from a menu
(Fig. 7a).

The Search-Insert Loop (context-wide)

6 hours 6 hours

,,,,, Event Attribute . ,@Pahem Name
Venue v Work Hard, Play Hard
Values Pattern Editor
Venue=Bar

1 [OF 11 [BA| or [PL

Train Station (14965 sequences) ! ! \

Subway (5124 sequences)

g A
Bar (4162 sequences) Venue=0ffice Venue=Plaza

% Cancel + Confirm

a b

% Cancel

Fig. 7. MAQUI allows analysts to search for (a) event attributes and (b)
freeform patterns in a context.

To insert an event, analysts select an event attribute (e.g., Venue) and
a value (e.g., Bar) from the menu. After clicking on the the v Confirm
button, MAQUI updates the entire flow visualization in the panel as
shown in Figure 8a. A blue node is added to the flow visualization.
We call the event attribute added by analysts to the flow visualization
a milestone. A milestone is color-coded using the same color across
different views. We do not color-code all the event attributes by de-
fault because the number of event attributes can outrun the number of
distinguishable color channels. The rectangular region before the blue
node represents the segments that occur before the milestone while
the region after the blue node represents the segments occurring after
the milestone. The dark gray region above the blue node represents
the event sequences that do not contain the milestone. We decided
to use the flow visualization design because the it is simple and easy
to understand (C1). MAQUI also inserts the same milestone to the
timeline to show the average duration and average number of events
for the segments before and after the milestone.

Event attributes can be repeatedly inserted into a context. For ex-
ample, analysts can insert Venue=Train Station before the blue milestone
in Figure 8a. The updated context is shown in Figure 10a. Clicking
on the red milestone event on the timeline in Figure 10a removes the
event attribute from the context and restores the context to the state in
Figure 8a.

Searching and inserting a user-defined pattern. Expert users might
ask questions that involve user-defined patterns. Indeed, many query
interfaces (e.g, EventFlow [28]) support searching for event sequences
that contain a complex pattern specified by users. To cater to expert
users, we designed an advanced mode for defining patterns. To enter
the advanced mode, analysts clicks on 4 on the timeline and click
on the To Advanced Mode button in the menu (Fig. 7a top right). The
advanced mode contains a pattern editor for creating freeform patterns
by combining logical operators (i.e. AND, OR, NOT) and event attributes.
In Figure 7b, the analyst is creating the pattern Office— Bar OR Plaza.

To insert a pattern into a context after defining it in the advanced
mode, analysts click on + Confrm. Inserting a user-defined pattern
behaves the same as inserting an event attribute In Figure 8b, the flow

visualization is divided into three rectangular regions that represents the
segments before and after the user-defined pattern, and the sequences
that do not contain the pattern. Using the visualization, analysts can
answer questions including “what are the common behaviors in the
event sequences that do not exhibit the defined pattern”.

a Inserting an event attribute Bar to the context.

38003 38003
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Start BAR End
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contain events with the
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the Bar milestone event the Bar milestone event
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Fig. 8. Inserting an event attribute or a pattern to the context.

5.2.2 The Specify-Filter Loop (context-wide)

Filtering by record attribute. One of the features demanded by the
analysts is the capability to extract event sequences using record at-
tributes (e.g., Q1 in Table 1). MAQUI enables analysts to filter out
some sequences in a panel by specifying record attributes. When ana-
lysts click on [ in the filter bar (Fig. 9a), MAQUI shows a menu to let
analysts select a record attribute. If the record attribute is a categorical
attribute, analysts simply select a value from the list (Fig. 9a); if the
record attribute is numerical, analysts select a range of values (Fig. 9b).
A record attribute filter is created by clicking on v Confirm. Analysts can
create multiple record attribute filters and can remove a record attribute
filter by dragging it out of the filter bar.

— T —

-
| @Record Attribute [ @Record Attribute
CitiesVisited 5 time $
Values Range Selector Timeunit: hr %
48
TKY Only (21320 sequences)
NYC Only (9349 sequences) |
Both NYC and TKY (7334 sequences) 192
% Cancel % Cancel + Confirm
a b
L L

Fig. 9. Analysts can filter out some sequences in a context using (a)
record attribute-value pairs or (b) time constraints.

Setting time and number of events constraints. Albeit expressive,
regular expression queries [5,45] consider an event sequence as a pure
sequence of events without considering duration between consecu-
tive events. Yet, duration between events is important for answering



questions in many domains [22,32]. To enhance the expressiveness
of MAQUTI’s query interface (C2), we allow analysts to set time gap
constraints between events. Analysts can set time gap constraints by
clicking on 1 in the filter bar and choose time from the Record Attribute
pull down menu (Fig. 9b). After creating a time constraint, some se-
quences in a panel that do not satisfy the constraint will be filtered out.
Analysts can also filter out the sequences in which the number of events
falls outside a defined range. To do so, analysts select eventCount from
Record Attribute list in the menu.

5.2.3 The Mine-Split Loop (focus-only)

As analysts select a set of segments in a panel, it becomes the focus and
is highlighted in yellow. This selection action also triggers the mining
algorithms to compute frequent patterns and frequent event attributes
for the focus.

Mining and splitting by frequent event attribute. The attribute-
value pair view (Fig. 1c) shows the mined values as a list, sorted
in descending order of the percentage of sequences in the focus that
contain an event. At a given time, the list comprises attribute-value
pairs that belongs to a single attribute. Analysts can change the attribute
by clicking on Attribute Name:.

To split the focus by an event attribute, analysts hover over the
attribute-value pair, and a 7 button appears (Fig. 10b). Clicking on
this button will automatically open a new panel, where the focus will
be split and visualized. Figure 10c shows the result of splitting the
selected segments in Figure 10a. The context visualization in the top
bar (Fig. 10c) provides the context in which a focus situates (C3).

a  User selects a focus from the context.
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Fig. 10. Splitting the selected focus using a frequent event attribute.

We choose not to split the focus in the original panel because the
flow visualization may cause misinterpretation after several splitting
operations if analysts were allowed to directly split the segments on
it. Figure 11 shows the resulting visualization when analysts split the
segments before Venue=Train station directly on the flow visualization
using Venue=Bar. It is not straightforward to tell whether 2,900 means
2,900 event sequences out of the 14,965 event sequences that contain
Venue=Train station or 2,900 out of all 38,003 event sequences. To keep
the flow visualization intuitive, a new panel is created for splitting the
focus (Fig. 10c).

Mining and splitting by frequent pattern. As analysts choose a
focus, sequential patterns are generated for the focus. We use VMSP

38003

14965

2900

Start BAR

Fig. 11. Potential misinterpretation if analysts were allowed to split
segments in the flow visualization directly. It is difficult to tell whether
2,900 means 2,900 event sequences out of 14,965 event sequences that
contain the Venue=Train Station milestone event or 2,900 out of all 38,003
event sequences.

TRAIN ST...

[13] for mining frequent patterns since prior work has demonstrated
that VMSP produces more compact patterns and effectively reduces the
number of frequent patterns for inspection [26]. The frequent pattern
view shows the mined patterns (Fig. 1b). When analysts hover over
a frequent pattern, a menu is shown (Fig. 1(2)). By clicking on [, a
frequent pattern is expanded. This is useful when analysts want to see
the full names of the events in the frequent pattern. Analysts can change
the minimum support and the event attribute on which the algorithm is
mined by selecting Minimum Support: and Attribute Name: at the bottom of
the frequent pattern view respectively.

MAQUI offers two ways to split the focus by a mined pattern. Ana-
lysts can click on 3. This operation opens a new panel and the selected
segments are split into three parts: the segments that occur before and
after the pattern, and the sequences that do not contain the pattern. This
operation enables analysts to incorporate a frequent pattern into an
existing query to create new segments.

Alternatively, analysts can click on (). This button adds all the event
attributes in a pattern and splits the focus by the event attributes in order.
This allows analysts to see the average duration between consecutive
event attributes in the pattern and to select segments between consecu-
tive milestone events as the focus for further investigation. For instance,
the bottom panel in Figure 1a is created after the analyst clicks on the

button in Figure 1

6 USAGE SCENARIO

To elucidate how analysts might interweave queries and pattern min-
ing during recursive event sequence exploration, let us consider how
Jane, an event sequence analyst, explores the Foursquare dataset using
MAQUI. We refer to the supplemental video for a demonstration of the
usage scenario”.

Jane is interested in comparing the daily routines of the people in
NYC and the people in Tokyo. To begin with, she creates two panels
in the query view. For the first panel (hereafter, the NYC panel), she
specifies a record attribute filter CitiesVisited=NYC only using the filter bar
(Fig. 12a) while for the second panel (hereafter, the Tokyo panel) she
adds the CitiesVisited=TKY only filter (Fig. 12b). She also filters out the
event sequences with less than five events for both panels. Clicking
on the sequences in the Tokyo panel, she observes that there is only
one frequent pattern with a support greater than 30%. She lowers the
minimum support to 15% so that more frequent patterns are mined.
Browsing through the list of frequent patterns, she is amused to see that
15.6% people in the Tokyo panel check-in six times in a train station.
By clicking (], she adds all six Venue=Train station event attributes in
this pattern to the Tokyo panel. Figure 12b shows the resulting flow
visualization after it is split by the six Venue=Train station event attributes.
As she wonders whether this pattern is common for the people in NYC,
she adds six Venue=Train station events to the NYC panel by searching
Venue=Train station from the context menu. She also clicks on [ 1| to encode
the height of nodes with the number above it. Figure 12a shows the
result. In contrast to people in Tokyo, people in NYC do not check-in
frequently at train stations.

Jane would like to know whether focusing only on the event se-
quences that span longer than 18 hours will give a more realistic de-
piction of the daily routines of the two groups of people. To keep a

2https://youtu.be/UhlBhDre KO
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a  Six TRAINSTATION events are added to the flow visualization in the NYC panel.
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b Six TRaNSTATION events are added to the flow visualization in the Tokyo panel.
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d  The duration between the two HoME events in the Tokyo panel is 15.8 hours.
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Fig. 12. Analyzing the Foursquare dataset using MAQUI. (a-b) Jane
observes that compared with people in Tokyo, people in NYC check-in
less frequently at a train station. (c-d) The average durations between two
Venue=Home milestone events are 10.2 hours and 15.8 hours respectively
for the NYC panel and the Tokyo panel.

history of what she did, she opens two new panels and specifies the
record attribute filters CitiesVisited=NYC only and CitiesVisited=TKY only re-
spectively. She filters out the event sequences that span less than 18
hours for both new panels. When she clicks on the event sequences in
the new NYC panel, the attribute-value pair view is updated to show a
ranked list of event attribute-value pairs. Jane notices that 31.9% of the
people in NYC check-in at their home. She adds Venue=Home from the
attribute-value pair view to the NYC panel to split the event sequences
in the NYC panel. To continue her recursive exploration, she selects as
the focus the segments to the right of the Venue=Home milestone event
in the NYC panel. This set of segments contains the events that occur
after the people in NYC check-in at home. The attribute-value pair
view shows that most people (44.7%) check-in at their home again.
Jane thinks that people probably check-in again at the end of the day
when they go back from work. She adds another Venue=Home event to
the right of the first Venue=Home event to split the segments after the first
Venue=Home. The timeline tells Jane that the average duration between
the two Venue=Home milestone events for the people in NYC is 10.2
hours (Fig. 12¢), which probably indicates the average working hours
for the people in NYC. Curious about the time between two Venue=Home
events in the Tokyo panel, Jane adds them to the new Tokyo panel and
observes that the average time between the two events is 15.8 hours
(Fig. 12d). The long duration between the two Venue=Home piques Jane’s
interest. She wonders whether it is related to the long working hours in
Japan, which is a well-known issue [30].

Finally, Jane wants to know whether she can observe patterns of a
typical day from the data. Many people start their days by commuting
to somewhere and end their days by commuting back home. She would
like to investigate if people do similar things in between. Jane first

creates a new panel and clicks on 4 to open the context menu. Using the
advanced mode, she creates a pattern (Home—s Subway OR Bus Station) and
names it as “Leaving Home”. She creates another pattern (Subway OR Bus
Station— Home) after the “Leaving Home” pattern and names it as “Going
Back Home”. The flow visualization shows that only 34 sequences have
a “Going Back Home” pattern followed by a “Leaving Home” pattern.
To inspect the frequent patterns in the segments between the “Leaving
Home” and “Going Back Home’ patterns, Jane selects the rectangular
regions between the two milestone patterns. She did not find frequent
patterns with a support above 15%. This illustrates a wide variety of
activities people do between “Leaving Home” and “Going Back Home”
in a typical day. Jane lowers the support to 5% and observes that 5.9%
(2 out of 34) of the sequences have the pattern Movie Theater— Movie Theater
(checked-in twice in a movie theater). She hovers over the pattern and
clicks on 7 to split the segments between the “Leaving Home” and
“Going Back Home” patterns further. This allows her to dive into what
happens before and after the Movie Theater— Movie Theater pattern.

7 CASE STUDIES

We conducted two real-world case studies with domain experts, one in
healthcare and one in marketing, to evaluate the efficacy of MAQUIL

71

Background. The first case study was conducted with two data ana-
lysts exploring software usage logs. The analysts were interested in
understanding frequent patterns of their users with respect to specific
milestone events. For example, they were interested in questions such
as “After people print, what are the things they do most?” Both ana-
lysts had experience in event sequence analysis, but had not previously
used MAQUI. Prior to MAQUI, the data analysts had used software
to analyze common next and previous events, but found it difficult to
distinguish looping sequences and repeating events. They had also tried
Markov Decision Processes (MDP), but found them difficult to iterate
over and interpret on-the-fly.

Software Usage Logs

Method. The session was conducted remotely, using screen sharing
and video conferencing between the two analysts and three researchers
from our team. The analysts were provided access to MAQUI on their
own machines and, after a brief overview of the interface, talked aloud
as they used the tool to explore their own dataset. The session lasted
approximately one hour and was recorded.

The dataset consisted of 140,193 events across 3,638 users and 8,738
sessions sampled from logs in March 2017, with each event correspond-
ing to an application feature (e.g., Category=Save As,and Category=Print)
used at a given point in time. There were 2,339 unique features in
the dataset, grouped into 453 subcategories and 268 categories. We
grouped the events by user ID and session ID to form sequences.

Analysis Process. The analysts began by inspecting the workspace,
which displayed all records by default, and noted that on average,
users workflows took 2.1 hours. From here, the analysts searched and
inserted the Category=Print event followed by Category=Print Success. After
noticing the surprising time gap of 50 minutes, the analysts selected the
segment after Category=Print Success to mine the most common patterns
after their queried pattern. Aside from inspecting the mined patterns
more closely, the analysts used the raw sequence panel to verify the
patterns matched their expectations of the data.

As is often the case in exploratory data analysis, questions beget
more questions, and the analysts were able to iteratively repeat pro-
cesses of querying, mining, and freeform exploration for additional
questions they had.

Feedback and Takeaways. In general, the analysts appreciated the
interwoven querying and mining, noting that, I really like how you
don’t have to drill down event by event or guess what the common
patterns are. The fact that [MAQUI] suggests them is very nice.”
Providing focus to the mining through querying and filtering made
the patterns more discernible. “Here I've had a case where they did
Text Move —Resize—Copy—Paste. That sounds like a real workflow that
somebody would do, and I'm not sure that I've ever been able to get to



that level before [with the other tools]... [It] is something we always
struggled for.”

Further, the machine-aided pattern mining and visual representation
improved the overall interpretability of the results, with one analyst
noting, “It’s useful that it looks more like user behavior than just
machine output [logs].”

The analysts also seemed to use MAQUI as verification for their
understanding of the dataset. In particular, they commonly used the
raw sequence view to confirm that insights were inline with their expec-
tations (“Oh yeah, this all makes sense” [more inspection] “Yeah, this
totally makes sense.”) or to understand why they deviated from their
expectations (“Does that seem right?”).

By leveraging the benefits of automatic pattern mining to find rele-
vant, important events combined with human-guided querying to set
focus, the analysts were able to arrive at interesting insights more easily
using MAQUI than with previous efforts.

7.2 Workflows in a Pediatric Emergency Department

Background. To understand the utility of MAQUI in the healthcare
domain, we conducted a case study with a highly experienced health
informatics professional with a medical degree. The expert commented
that the overarching problem that health practitioners would like to
have insights on is what care patterns lead to better results at the lowest
costs. For instance, he would like to investigate the patterns of care for
each doctor, how much their patients spend, and what the disposition
ultimately is. Similar to our previous study, the expert had experience
with event sequence analysis, but had not used MAQUI before.

Method. We conducted a one-hour onsite interview with the expert.
During the interview, the expert was invited to think aloud while explor-
ing a dataset using MAQUI. The dataset consisted of 295,686 events
that occurred in the emergency department (ED) of a major pediatric
hospital between Jan 2013 and Jan 2014. Each event sequence cor-
responds to the process a patient went through in his/her visit to the
emergency department. Examples of events include Category=Arrival,
Category=ED Exit, Category=Triage Start, and Category=Triage End. There are in
total 10,020 event types that are grouped into 28 categories. The events
are grouped by visit ID to form 3,919 event sequences. Our participant
was knowledgeable about the dataset.

Analysis Process. During the interview, the expert began by investi-
gating the average time between when a patient arrived and s/he saw
the first attendee. After splitting the event sequences by Category=Arrival
and Category=First Artendee, he saw that the average time is 55.3 minutes,
which is not surprising. However, as he selected the segments before
Category=Arrival, he found some abnormal patterns from the frequent
pattern view: 21.7% of the patients had the pattern Diagnose — Diagnose
even before they arrived at the hospital. We later found that this was
indeed a data quality issue introduced when we cleaned the data —
MAQUI helped us to find unexpected data quality issues that were
unknowingly introduced.

The expert participant then used the frequent patterns mined
by the system to split the current focus for recursive exploration.
When he was investigating the patterns between Category=Arrival and
Category=Disposition, he saw the pattern Triage Start—Triage End—First At-
tendee — Medication Start—Medication Ordered and used it to Split the segments
between Category=Arrival and Category=Disposition. He merged the seg-
ments between Category=First Attendee and Category=Medication Start, and the
segments between Category=Medication Start and Category=Medication Ordered.
He then selected the new segments between Category=First Attendee and
Category=Medication Ordered to mine frequent events in between.

Feedback and Takeaways. Overall, the expert participant liked the
system’s capability despite the data quality issues he encountered during
the analysis: “I think this has a lot of promise but I think we need a
better dataset”. He particularly appreciated how he could mine patterns
from different segments and with different criteria: “What is going
to be interesting is to take one of these pairs [of milestone events]
and analyze different branches to understand where they [different
branches] lead to and how they differ”. Throughout his analysis, he
noted the ease at which care patterns could be examined and was

particularly impressed with the capability of recursively querying and
mining, something he referred to as “the key to deep understanding,
improvement, and potential redesign of healthcare processes”

8 DISCUSSION

One of the limitations of MAQUI concerns scalability. While MAQUI
can effectively handle the Foursquare dataset that contains more than
30,000 event sequences, it is highly sensitive to datasets with a large
number of event types. With more than 1,000 event types, the speed
of mining frequent events and frequent patterns significantly degrades.
This would introduce high latency to user interactions and potentially
hampers users’ performance during analysis [24]. However, as research
in sequential pattern mining algorithms matures, we anticipate that
faster algorithms will be developed. By being agnostic to the sequential
pattern mining algorithms used, our technique can be widely adopted
when faster algorithms are available.

Data quality is another issue that emerged during both case studies.
For small data quality issues, the patterns generated by mining algo-
rithms will often not be affected because these algorithms summarize
event sequences by abstracting away low-level details. Large data qual-
ity issues such as systematic errors introduced during data wrangling,
however, might contaminate the patterns mined. As suggested by the
analysts in the software usage logs study, one potential solution is to
let analysts wrangle the data on the fly as they explore the patterns.
For instance, analysts may want to remove a particular events from all
event sequences or combine two events into one during their analysis.

MAQUI takes advantage of the multi-panel design to support re-
cursive event sequence exploration, reduce visual clutter and facilitate
cohort comparison. Yet, managing a large number of panels can be
difficult because of a limited screen real estate and high cognitive
load involved in monitoring. Currently, MAQUI only supports simple
panel management operations such as collapsing and closing a panel.
Other techniques such as rearranging and grouping panels can poten-
tially reduce cognitive load in recursive event sequence exploration.
Furthermore, MAQUI only supports visual comparison of cohorts by
juxtaposition. Strategies such as superposition [15], cloning events
from one panel to another and rearranging panels can be adopted to
help analysts gain insights into the differences between cohorts. In
future, we would like to explore the best practices of panel comparison
by following Gleicher’s guidelines [14].

It has been known that volume and variety of event sequences pose
significant challenges to event sequence analysis [10]. Other challenges,
including data quality, diverse tasks in different domains, and compli-
cated logic of event sequences, further create barriers to making sense
of event sequence data. A single solution (e.g., querying only, and
mining only) is insufficient for dealing with all these complexities that
frequently appear in real-world event sequence exploration. To address
real-world challenges, research has to be done on how various existing
techniques (e.g., visualization, data wrangling, querying, and pattern
mining) can be combined and interoperate. Our work takes a step in
this direction by contributing an understanding of how querying and
mining can be interwoven during event sequence exploration.

9 CONCLUSION

In this paper, we introduced MAQUI, a visual analytics system that
enables analysts to interweave queries and pattern mining for recursive
event sequence exploration. Based on the analysts’ tasks, we identified
the need for combining querying and mining to explore event sequences
in a recursive manner. Following this observation, we proposed a frame-
work of interwoven querying and mining that describes the atomic user
actions for recursively refining the analytic context and focus during
analysis. Through two real-world usage scenarios, we demonstrated
the utility of our approach in event sequence exploration. As the variety
and volume of event sequence data continue to increase, fascinating
challenges emerge. MAQUI provides an important foundation to ad-
dress these challenges. We hope that MAQUI inspires new approaches
to event sequence exploration.
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