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ABSTRACT

Automatically generating data visualizations in response to human 
utterances on datasets necessitates a deep semantic understanding 
of the utterance, including implicit and explicit references to data 
attributes, visualization tasks, and necessary data preparation steps. 
Natural Language Interfaces (NLIs) for data visualization have ex-
plored ways to infer such information, yet challenges persist due to 
inherent uncertainty in human speech. Recent advances in Large 
Language Models (LLMs) provide an avenue to address these chal-
lenges, but their ability to extract the relevant semantic information 
remains unexplored. In this study, we evaluate four publicly avail-
able LLMs (GPT-4, Gemini-Pro, Llama3, and Mixtral), investigat-
ing their ability to comprehend utterances even in the presence of 
uncertainty and identify the relevant data context and visual tasks. 
Our findings reveal that LLMs are sensitive to uncertainties in utter-
ances. Despite this sensitivity, they are able to extract the relevant 
data context. However, LLMs struggle with inferring visualization 
tasks. Based on these results, we highlight future research direc-
tions on using LLMs for visualization generation. Our supplemen-
tary materials have been shared on GitHub: https://github. 
com/hdi-umd/Semantic_Profiling_LLM_Evaluation. 

Index Terms: Human-centered computing—Visualization— 
Empirical studies in visualization; 

1 INTRODUCTION

Designing an effective data visualization requires multiple consid-
erations, such as identifying relevant data attributes, preparing the 
dataset in the right format through data wrangling and transfor-
mation, identifying analytical tasks or communication goals, and 
choosing appropriate visual encoding strategies. Over the years, vi-
sualization researchers have primarily focused on different ways to 
automatically identify appropriate visual encodings [32, 17, 34], 
but have largely overlooked important aspects such as automating 
task identification and data preparation. Only recently have re-
searchers started to address these overlooked issues [33, 20, 29]. 

Among these efforts, natural language interfaces (NLI) have 
emerged as a popular interaction paradigm for visualization gen-
eration. To users, it is easier to articulate their visualization in-
tents through natural language than using programming constructs 
or complex graphical user interfaces; to system builders, natural 
language utterances provide valuable information on user intent that 
could be hard to capture. However, natural language utterances can 
be difficult to handle due to uncertainties such as ambiguities [7] 
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and under-specification [23]. Furthermore, it is necessary to ad-
dress issues such as data preparation and task identification in visu-
alization systems with natural language interfaces. 

Large Language Models (LLMs) hold great promise for creat-
ing natural language interfaces tailored to data visualization, due to 
their ability to interpret and generate textual data. While a few tools 
have utilized them for visualization generation [27, 9, 30, 5], they 
tend to focus on low-level applications of LLMs, such as generat-
ing code for data transformations [30] or simply integrating them 
as part of a pipeline [5]. It is still unclear how well LLMs perform 
at extracting information crucial to visualization generation from 
utterances without human interference. 

In this work, we embark on an evaluation of the capabilities of 
LLMs in the semantic profiling of natural language utterances for 
the purpose of data visualization generation. In line with other 
work, we use the term “utterance” to refer to questions or instruc-
tions people use to elicit responses from an NLI or LLM [24]. By 
semantic profiling, we do not evaluate visualizations generated by 
LLMs but instead focus on the following dimensions: 1) clarity 
analysis, which determines if an utterance is ambiguous, under-
specified, or asking for missing data, 2) data attribute and trans-
formation identification, which identifies relevant data columns and 
any necessary transforms to prepare the data into a usable format, 
and 3) task classification, which seeks to uncover user intent. 

To support our research goal, we collated a corpus of 500 data-
related utterances based on an evaluation of two NL datasets (NLV-
Corpus [24] and Quda [6]). We analyzed utterances with the fol-
lowing annotations: 1) uncertainties such as ambiguities and miss-
ing data references, 2) required data attributes and data transfor-
mations, and 3) visualization tasks. We then present a systematic 
analysis of the capabilities of four publicly available LLMs (GPT-
4, Llamma3, Mixtral, and Gemini) across the three dimensions of 
semantic profiling. Our results show that LLMs make inferences 
at a different level of abstraction than humans, causing them to 
be hyper-sensitive to uncertainties in utterances. We also find that 
LLMs perform reasonably at identifying the relevant data columns 
and data transformations expressed in utterances but are not able to 
properly infer visualization tasks. We highlight our observations on 
the current strengths and challenges of LLMs and present a discus-
sion on considerations for using LLMs in visualization generation. 

2 RELATED WORK

Natural Language Interfaces for Visualization Generation. 
There has been extensive research on natural language interfaces 
(NLI) dating as far back as 2001 when Cox et al. proposed the use 
of natural language as an input medium for the generation of data 
visualizations [4]. Since then, a plethora of NLIs have been cre-
ated [7, 26, 13, 10, 15, 20]. These NLIs use techniques, such as lexi-
cal tokenization or semantic parsing, to infer and translate represen-
tations of data attributes and tasks in utterances into visualizations. 
However, when users’ utterances are under-specified, inferring the 
correct data and task representation becomes challenging. Tools 
such as DataTone circumvent this limitation by allowing users to 
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resolve ambiguity through GUI widgets. Similarly, Eviza [22] and 
Evizeon [10] provide users with the ability to interact with gener-
ated visualizations and refine designs via follow-up utterances. 

Recent research has progressed towards facilitating visualization 
code generation based on NL input [33, 20] , generating NL ex-
planations for visualizations [14] and recommending input utter-
ances [25]. Together, these works demonstrate the capabilities of 
NLIs for visualization. However, NLIs still struggle with resolving 
under-specifications in utterances without human intervention. 

Large Language Models for Data Visualization. Technological 
advances have given rise to improvements in NLIs, such as the use 
of BERT to translate user intent expressed in NL into a domain-
specific language for visualizations [3]. More recently, we have 
seen an uptick in the applications of Large Language Models for 
visualization generation. One such tool is ChartLlama [9], which 
uses a fine-tuned open-source LLM trained on synthetic benchmark 
dataset generated from GPT-4 [21] to enhance chart generation and 
comprehension. Some tools develop pipelines to prompt LLM for 
relevant code for visualization implementations [27, 5, 18], while 
others use LLMs to facilitate data transformations [30]. 

There have also been works that evaluate the capabilities of 
LLMs for different visualization contexts. Li et al. evaluate prompt-
ing strategies for generating visualizations based on the nvbench 
dataset [16]. Vázquez also evaluates LLMs across 3 axes: the va-
riety of generated chart types, supported libraries, and design re-
finement [28]. However, these evaluations do not present results 
for multiple LLMs and focus on the visual artifacts produced by 
these LLMs. Our work builds on this thread of research by evaluat-
ing the strengths and limitations of different LLMs in inferring the 
semantic information needed to create visualizations. 

3 COLLATING NATURAL LANGUAGE UTTERANCES 

To facilitate the evaluation of LLMs’ capabilities for extracting rel-
evant data and visual contexts, we need a set of data-related user 
utterances to provide as prompts to LLMs. These utterances need 
to reflect the level of uncertainty found in human speech. To this 
end, we sourced utterances from two publicly available corpora: 

• NLVCorpus: This dataset presents 893 utterances collected 
from an online survey, where 102 respondents were asked to 
describe utterances they would input to an analytical system 
to generate a specific visualization [24]. 

• Quda: This dataset utilizes interviews with expert data ana-
lysts to generate a corpus of 920 utterances [6]. These utter-
ances were refined and paraphrased via a crowdsourced study 
to generate a final dataset of 14,035 diverse utterances. 

We performed a systematic examination of utterances from each 
dataset and filtered out utterances if they contained SQL pseudo 
code, e.g., “group (region) — For each region, group by (ship sta-
tus) — For each (region, ship status), calculate the sum of profit”. 
For our analysis, we were interested in examining how well LLMs 
infer the necessary aspects of the semantic profile and not explicit 
visualization descriptions. Consequently, we also filtered out utter-
ances that specified visualization types or mapping of data to visual 
elements, e.g., “give me a scatterplot of imdb rating as x axis and 
rotten tomatoes rating as y axis”. 

This selection process was first applied to the NLVCorpus 
dataset, which yielded a total of 134 utterances across 3 unique 
datasets. We then applied the same inclusion criteria to a subset of 
the Quda dataset to produce the remaining 309 utterances across 32 
datasets. We also included 54 utterances across 2 datasets collected 
from a classroom activity conducted in an undergraduate level data 
visualization class at a US-based University . Our final corpus con-
sists of 500 diverse utterances across 37 unique datasets. 

4 GENERATING GROUND TRUTHS AND LLM RESPONSES 

4.1 Manually Annotating Utterances 

Three of the authors performed manual annotation of utterances in 
our corpus. The lead annotator has 5 years of visualization research 
experience, while the remaining two annotators have at least 2 years 
of experience creating visualizations. To annotate our corpus of ut-
terances, the lead author drafted an initial codebook from an eval-
uation of relevant taxonomies for visual tasks and data transforma-
tions [2, 19]. Five random utterances were then selected from the 
corpus, and three of the authors independently examined and an-
notated them. The authors met in a subsequent meeting to discuss 
their codes. The codebook was then updated based on this dis-
cussion. The three authors manually annotated the remaining 495 
utterances over the course of 12 weeks, holding weekly meetings to 
discuss and resolve conflicts. Here, we describe these annotations. 

Uncertainties. We labeled utterances that could lead to multiple 
interpretations or couldn’t be answered with the provided dataset 
as uncertain. We annotated ambiguities and under-specification by 
highlighting confusing words, explaining their lack of clarity, and 
suggesting resolutions. For instance, the utterance “In what manner 
are good air quality records dispersed throughout the monitored re-
gion ?” was labeled ambiguous because the reference dataset had 
air quality readings generated at different times for each region. 
Therefore, the good air quality readings could be split into differ-
ent time periods (per hour of the day, per date) or even aggregated 
across the entire dataset. We provided a resolution to calculate sum-
mary statistics and generate yearly trends for good air quality. 

While annotating the 500 utterances in our corpus, we found 18 
utterances that requested information unavailable in the dataset. For 
instance, on the dataset showing life expectancy by states in the US, 
one of the utterances asked “show me the GDP ranking of European 
countries”. This dataset did not contain any information about any 
countries. As such, it is not possible to answer such a question. 
Since these utterances were obtained from other studies, it is un-
clear how these utterances came to be. While we did not provide 
annotations for the relevant data and visual context for these utter-
ances, we still chose to include them when prompting LLMs as we 
are still interested in evaluating their ability to identify and resolve 
such uncertainties in utterances. 

Data Attributes and Transformations. For each utterance, we 
identified the relevant data column[s] needed to correctly answer 
the utterance. Some utterances require data transformations to gen-
erate a new data table that can be used to answer the question. We 
initially captured the operations needed to transform the data table, 
such as fold, unstack, and group. However, to properly assess the 
accuracy of these operations, we need to evaluate the actual data 
tables they generate. As such, we opted to capture the relevant 
pandas code that would be used to perform data transformations. 
Using the previous example utterance on the air quality dataset, 
the data transformation needed to generate the relevant data table 
was res = d f .groupby([ ′ Generated ′ , ′ Station ′ ]).apply(lambda x : 
x[x[ ′ Air Quality ′ ].lower() == ′ good ′ ]) 

Visualization Tasks. The visual task[s] were classified 
based on the inferred intent of the utterance. The taxonomy 
for these tasks was adopted from published works by Amar et 
al. [2] and Munzner [19] and include: Retrieve Value, 
Filter, Compute Derived Value, Find Extremum, 
Sort, Determine Range, Characterize Distribution, 
Find Anomalies, Cluster, Correlate, summarize, 
Compare, Dependency, Similarity, and Trend. 

4.2 Generating LLM Outputs 

We evaluated two proprietary and two open-source LLMs. 
Proprietary LLMs. We evaluated OpenAI’s GPT4-Turbo [21] 
and Google’s Gemini-Pro [8]. GPT4-Turbo has a training data 



cutoff of December 2023 and Gemini-Pro’s training data cutoff 
is described as “early 2023” 1 . We utilized the Application Pro-
gramming Interfaces (APIs) for both of these models to generate 
responses for the 500 utterances in our corpus. 
Open Source LLMs. We evaluated two open-source LLMs, 
Llama3 , and Mixtral , on the Llama factory code base [35]. 
Llama3 [1] has 70 billion parameters and a context length of 8,000 
tokens, with a knowledge cutoff of December 2023. Mixtral-8x7B-
Instruct [11] is configured with 46.7 billion parameters and simi-
larly has a knowledge cutoff in December 2023. 

4.2.1 Prompt Design 

We explored different prompting strategies (One-shot vs. Few-
shot) to elicit responses from LLMs. We decided to use a few-
shot prompting as it is more suited for complex tasks and allows 
the model to learn requirements from provided examples [31]. The 
prompt provided to each model contained similar instructions to 
those used by our human annotators in Sec.4.1. For the data trans-
formation code, we instructed the LLMs not to include code for 
plots or complex analyses. We provided three utterance-dataset-
output samples, which were not part of our evaluation corpus. 
These sample utterances included the corresponding ground truth 
annotations to help the model gain an understanding of the expected 
output. We also include the first 10 rows of the dataset to provide 
an overview of the input data schema. Due to space considerations, 
the full prompt has been provided in supplementary materials 2 . 

4.2.2 Challenges Retrieving Responses. 
We expected to receive a total of 2000 LLM responses (500 per 
LLM). However, we encountered some issues eliciting responses 
from the LLMs. Some of our queries using the APIs of proprietary 
models returned null responses ( : 9, : 2). For the open-source 
models, 42 of the responses did not return the JSON annotations 
and instead returned a text-based answer to the utterance ( :20, 

:22). Both models also occasionally failed to correctly format 
the JSON responses correctly, wrapping keys with ‘/,‘ ‘@,‘ or ‘<.‘ 
Wrongly formatted JSON responses were resolved manually. The 
final set contains 1947 valid annotations from the LLMs ( : 491, 

: 498, : 481, : 477). 

5 ANALYSIS AND RESULTS 

We analyzed the LLMs responses across three dimensions of se-
mantic profiling: clarity analysis (i.e., comprehension of utterances 
in the presence of uncertainty), proper identification of the relevant 
data context, and proper inference of the visualization task. 

5.1 Identifying uncertainty 

Summary Statistics: Of the 500 utterances in our corpus, the hu-
man annotations found uncertainty in 96 of the utterances. A total 
of 813 uncertainties were found across all LLMs ( : 268, : 192, 

: 180, : 173). Of these 813 uncertainties, only 25.1% (n=204) 
overlapped with human annotations ( : 74, : 46, : 44, : 40). 
Differences in uncertainties classified by LLMs and human an-
notators. We observe that all LLMs identified a higher propor-
tion of uncertainty in the utterances than those identified by the 
human annotators (see Fig.1). When we examine some of these 
uncertainties identified by the LLMs, we find that they describe un-
certainty on how to perform analysis or missing context for data 
column values. For instance, for the utterance “Can we conclude 
that higher happiness comes from higher freedom?”, GPT-4 re-
turned the following ambiguity: “The query does not specify if the 
analysis should consider other factors that might influence happi-
ness, or if it should be isolated to just happiness and freedom.” To 

1According to Google AI documentation 
2Supplementary Materials 
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Figure 1: Overview of the overlap in uncertainty annotations be-
tween the LLMs and Human (HM) annotations. 

the human annotators, this was simply a case of showing the corre-
lation between the two attributes; hence, there was no uncertainty 
annotation for this utterance. Similarly, for the utterance “Compare 
the number of tall buildings in Hong Kong with Taiwan”, Gemini-
Pro classified this as uncertain because “It is unclear what metric 
should be used to quantify the tallness of a building. Should the 
number of stories be used or the height in meters or feet?”. Our 
human annotators inferred that the height of the building would be 
the measure used to answer this utterance. 
Uncertainties not found by LLMs. Of the 96 utterances for which 
human annotators found uncertainty, some were not identified by 
LLMs ( : 14, : 32, : 34, : 35). A majority of these uncer-
tainties were as a result of either missing or conflicting data be-
ing referenced in the utterance. An example is the utterance “How 
can the population of Ashley be illustrated to show the distribution 
across five years?” Our annotations labeled this as uncertain be-
cause the dataset only contains information from 2000 to 2002, so 
it is impossible to answer this using the dataset. None of the LLMs 
labeled this utterance as uncertain. 

5.2 Identifying Relevant Data Context 
For each data column identified in LLM-generated responses, we 
examined if they were also identified by human annotators. We 
defined three levels of agreement between LLMs and human an-
notations: 1) total agreement, where LLMs identify all relevant 
data columns; 2) partial agreement, where LLMs identify some of 
the data columns; and 3) total disagreement, where LLMs identify 
none of the data columns. 
Summary Statistics. Of the 1947 responses returned by LLMs, 
we filtered out 53 responses that were related to the utterances 
for which our human annotators did not generate codes for data 
columns (see Sec. 4.1). We also eliminated an additional 13 re-
sponses where the LLMs did not generate data column values, 
bringing the total responses evaluated for data columns to 1881. 
LLMs are able to correctly infer relevant data columns for most 
utterances. As shown in Fig. 2a , 57.5% of the valid annota-
tions generated by LLMs had a total agreement with the human 
annotations ( :312, :241, :273, :255). 34.24% had partial 
agreement( :140, :180, :157, :167) between LLMs and hu-
man annotations, while 8.29% had complete disagreement in the 
relevant data columns identified ( :32, :48, :37, :39). We ob-
served that 43.6% of these complete disagreement cases had uncer-
tainties identified by either human annotators or LLMs. 

5.2.1 Data transformations 

For each response generated by an LLM, we executed both the 
LLM-produced and human-annotated transformations, extracted 
the resulting data tables from both executions and compared their 
underlying data schemas (i.e., attribute types) to verify the accu-
racy of the transformations presented by LLMs. For example, for 
the utterance “What is the relationship, if any, between wind and 
pressure?”, both the data transforms provided by Llama3 and 
human annotations returned a data table with the following schema 

https://ai.google.dev/gemini-api/docs/models/gemini
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Figure 2: Overview of overlapping annotations between LLMs and humans for data attributes, transformations and visual tasks. 

{wind : int, pressure : int}. Since the data tables have the same 
number and types of attributes, this is a positive match. 

While evaluating the data transformations, we found 31 in-
stances where the code for data transformations violated instruc-
tions on not returning code for visualization plots or performing 
complex analyses which were excluded from our analyses ( :1, 

:0, :15, :15). Furthermore, we found that 385 of the transfor-
mations raised errors of various kinds ( :59, :96, :119, :111) 
or returned raw values and not data tables ( :66, :90, :57, :52). 
Since the human annotation prioritized data tables as the output of 
data transformations, we exclude such responses in our analyses. 

Data transformations produced by LLMs do not always match 
those generated by human annotators. The final set for our 
analysis on data transformation is 1238 responses ( :360, :290, 

:292, :296). 48.1% of these responses produced data tables with 
schemas that match those produced by the human annotations (see 
Fig. 2b). For the remaining 51.9% where the data did not match 
what was produced by the code annotated by humans, our evalua-
tion focuses on matches between data schemas. As such, we cannot 
verify if the resulting data tables provide meaningful answers to the 
utterance or if they were the result of incorrect data transformations. 

5.3 Inferring Visualization Tasks 

Similar to the analysis for data columns, we identify three levels of 
agreement between human and LLM annotations for visual tasks. 
Summary Statistics. Of the 1947 responses returned by LLMs, 
visualization tasks were identified in 1940 responses ( :490, :494, 

:479, :477). 
Higher proportion of disagreements between human annota-
tions and LLMs for visual task classifications. We observed 
the highest level of disagreement between LLMs and human an-
notations in the visual task classifications. 50.4% of the visual 
tasks were in total disagreement, as seen in Fig. 2c ( :205, :253, 

:224, :296). There was total agreement in 33.43% of the re-
sponses ( :208, :169, :169, :103) while the remaining 16.17% 
had partial agreement for the visual task ( :81, :68, :86, :78). 
When we examine a portion of the cases with total disagreement, 
we observe that some of the issues are a result of conflicting in-
terpretations. For instance, for the utterance “What is the main 
factor depending on different status (wind, time, pressure, etc)?” 
Gemini classified this as “correlation” whereas the human anno-
tations classified the utterance as “dependency” since correlation 
cannot be calculated between categorical and numerical attributes. 
We also see instances where LLMs mix data transformations with 
visual tasks, e.g., for the utterance “What was the average bud-
get for each content rating and creative type, as multiple column 
charts?” Mixtral classified the utterance as “aggregation, cate-
gorization & relationship”. 

6 DISCUSSION AND FUTURE WORK 

We evaluated the capabilities of four publicly available LLMs in 
semantic profiling of natural language utterances for data visualiza-
tion. Our results pose interesting insights for future research. 

Using uncertainties to facilitate deeper data exploration and 
analysis. Our findings show that LLMs found a higher number 
of uncertainties in utterances compared to our human annotators. It 
is possible that humans and LLMs identify uncertainties at different 
levels of abstraction, as humans are able to interpret context more 
deeply and make better inferences. One such instance of this differ-
ence can be seen in the inference in the “tallest building” example 
provided in Sec.5.1. As a result, LLMs might be more sensitive 
to uncertainties in utterances. These results amplify the need for 
LLMs to express their intrinsic uncertainty in responses to allow 
humans to make informed judgments on how to resolve such uncer-
tainties [12]. Furthermore, the sensitivity of LLMs to uncertainties 
can be leveraged to pose questions to analysts and help them think 
deeply about their analysis questions or approach. Facilitating such 
interactions in NLIs is an interesting research direction. 
Improving programming-based responses to utterances. We ob-
served that LLMs are also capable of inferring the appropriate data 
columns and transformations for over half of the utterances. Yet, 
for many of the data transformations, we found a number of issues 
within the code returned by LLMs. This issue is known and tools 
circumvent this by prompting for multiple code scripts and filtering 
out erroneous scripts [5, 30]. While these erroneous responses can 
improve via feedback and fine-tuning prompts, there is a need for 
further research on how to improve the generation of relevant code 
for visualization contexts. 
Improving visualization task inference to facilitate exploration. 
We also found that LLMs struggle to correctly infer appropriate 
visualization tasks from utterances. Nevertheless, there is a need 
to investigate ways to improve LLMs’ ability to infer visualization 
tasks properly. This is important as these tasks often inform visual-
ization design choices, such as using bar charts for comparison or 
violin plots to characterize distributions [2, 19, 20]. Proper infer-
ence of visual contexts can also facilitate a breadth-wise exploration 
of data similar to the Voyager system [32]. For instance, if a user 
is working on the movies dataset and an LLM can infer they are 
trying to find anomalies in the IMDB ratings, it can recommend 
potentially interesting utterances based on the relevant tasks, such 
as comparing IMDB ratings across creative tasks or finding corre-
lations between IMBD and Rotten Tomato ratings. 

7 CONCLUSION 

We evaluated the capabilities of four publicly available LLMs 
(GPT-4 , Gemini , Llama3 and Mixtral ) at correctly inferring 
the semantic profiles of natural language utterances for data visu-
alization generation. Our findings reveal important strengths of 
LLMs at identifying uncertainties in utterances and inferring rel-
evant data columns. We also highlight the current limitations of 
LLMs for generating data transformation code and inferring visu-
alization tasks. Based on our findings, we present future research 
directions on the use of LLMs for visualization generation. 
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