
Manipulable Semantic Components:
a Computational Representation of Data Visualization Scenes

Zhicheng Liu , Chen Chen , and John Hooker

Abstract—Various data visualization applications such as reverse engineering and interactive authoring require a vocabulary that
describes the structure of visualization scenes and the procedure to manipulate them. A few scene abstractions have been proposed,
but they are restricted to specific applications for a limited set of visualization types. A unified and expressive model of data
visualization scenes for different applications has been missing. To fill this gap, we present Manipulable Semantic Components (MSC),
a computational representation of data visualization scenes, to support applications in scene understanding and augmentation. MSC
consists of two parts: a unified object model describing the structure of a visualization scene in terms of semantic components,
and a set of operations to generate and modify the scene components. We demonstrate the benefits of MSC in three applications:
visualization authoring, visualization deconstruction and reuse, and animation specification.

Index Terms—data visualization, scene abstraction, visualization model

1 INTRODUCTION

To create and render a data visualization, we must first assemble a
scene—a data structure that includes all the visual elements and compo-
nents, their attributes, relationships, and constraints in the visualization.
A visualization scene can be manually assembled, for example, by
using an XML-based markup language based on the SVG (Scalable
Vector Graphics) specification [1], or by drawing shapes on a canvas
in a vector graphics editor. Since such processes are tedious for com-
plex visualization designs, two popular approaches have been proposed
to facilitate expressive scene assembly: scene manipulation libraries
and declarative specifications. An example of a scene manipulation
library is D3 [8], which uses the DOM (Document Object Model) to
represent a visualization scene, and provides functions for program-
mers to select and modify scene elements. Declarative specifications,
on the other hand, decouple the description of desired visualization
from scene assembly. Using languages such as ggplot2 [51] and Vega-
Lite [42], programmers only need to specify their intents in declarative
specifications, which are compiled into visualization scenes.

Both approaches have been successful in facilitating scene assembly.
However, recent developments in various visualization applications
postulate the need for going beyond scene assembly to support scene
understanding and augmentation. For instance, visualization reverse-
engineering involves an automated system deconstructing a scene to
understand the semantic roles of visual objects and their relationships.
Another example is interactive visualization authoring, where users can
interactively edit [6], reuse [11, 13], and annotate [36] static visualiza-
tions, as well as define interactive [44] and animated behaviors [15, 50]
through a graphical user interface.

Existing scene manipulation libraries and declarative specifications
do not provide vocabularies at an appropriate level for such applications.
Libraries like D3 use SVG as the scene graph model, which does not
capture high-level semantic abstractions of visualization scenes [10,15].
Declarative specifications, by decoupling specification from scene as-
sembly, hide details on how a scene is represented (e.g., the hierarchical
organization of the visual objects) and manipulated (e.g., updating the
number of marks based on the values of a data variable). They do not
provide native support for directly referencing, selecting, and editing
scene objects. Researchers thus resort to defining their own scene

• Zhicheng Liu, Chen Chen, and John Hooker are with University of
Maryland, College Park. E-mail: {leozcliu, cchen24}@umd.edu,
jhooker@terpmail.umd.edu

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

abstractions. For example, Chartreuse identified two primary mark
structures (units and sequences) and six update operations (morph,
move, fix, recolor, repeat, and partition) to reverse-engineer and reuse
infographics bar charts [13]; Canis [15] defines a new scene model
called dSVG to describe the data-enriched semantic components in
SVG charts for animation authoring. Such efforts, however, are re-
stricted to specific applications for a limited set of visualizations. A
unified and expressive model of data visualization scenes for different
applications has been missing.

To fill this gap, we present Manipulable Semantic Components
(MSC), a computational representation of data visualization scenes. By
computational representation, we refer to the format and methods that
define how a data visualization scene is represented and manipulated
within a computational system. MSC consists of two parts: a unified
object model describing the structure of a visualization scene in terms
of semantic components, and a set of operations to generate and modify
the scene components.

In the object model, we identify the following major types of se-
mantic components: visual elements (e.g., mark, glyph, collection),
data scope, encodings (i.e., mapping between data attribute and visual
channel), algorithmic layouts (e.g., grid, stack, packing), relational
constraints (e.g., alignment) and view configuration. Each of these
components has a set of associated operations. Specifically, we identify
generative operations that create or remove visual elements based on
data (e.g., repeat, divide, densify, classify, repopulate, and stratify), and
modificative operations that update visual properties of elements or
relationships between elements (e.g., apply visual encoding, customize
scale, apply layout, apply constraint).

We demonstrate the benefits of MSC and how it supports different
applications in three case studies: visualization authoring, visualization
deconstruction and reuse, and animation authoring.

2 MANIPULABLE SEMANTIC COMPONENTS IN A DIVERGING
STACKED BAR CHART: AN EXAMPLE

For an example of manipulable semantic components, consider the di-
verging stacked bar chart in Fig. 1a. This chart visualizes a hypothetical
dataset reporting people’s opinions on a subject matter, broken down
by age (below 30, 30 - 50, 50 - 70, above 70) and responses (strongly
agree, agree, disagree, strongly disagree). The underlying data table
consists of three columns: age, response, and pct (percentage of peo-
ple with a particular response within an age group). The scene of this
chart consists of the following semantic components (Fig. 1b): marks
such as rectangles and texts are the graphical primitives; groups orga-
nize the rectangle marks by the age values; layouts specify the spatial
relationships of rectangle marks within and across groups; encodings
bind data attributes (e.g., pct) to visual channels (e.g., rectangle width);
constraints enforce inter-object spatial relationships (e.g., light blue
rectangles are aligned to the right, text marks are affixed to the rectangle

https://orcid.org/0000-0002-1015-2759
https://orcid.org/0000-0003-3171-0657
https://orcid.org/0009-0009-9965-4015

(a)

(b)

Fig. 1: Manipulable semantic components in a diverging stacked bar
chart. The scene abstraction not only captures hierarchical relationships
between objects but also relationships like constraints and encodings.

marks at the center). A component can have parameters, e.g., a stack
layout component has orientation and gap parameters.

In addition to describing the scene structure, MSC also describes the
generative procedure to create and modify these components. Figure 2
shows major steps of creating this chart using the MSC operations:
(a) create a rectangle mark;
(b) repeat the rectangle by age, resulting in a collection of four rectan-
gles in a 4×1 grid layout, each representing an age group;
(c) divide each rectangle by response, splitting it into four rectangles
in a horizontal stack layout, each representing a response type;
(d) encode the rectangles’ width by pct and fill color by response;
(e) align the light blue rectangles to the right to better show the diver-
gence of opinions;
(f) repeat an initial text item by pct to create the labels, and affix the
position of the texts to the center of the rectangles.

During this process, we can also freely resize or translate the ob-
jects. The encodings and constraints are enforced to ensure the design
represents data faithfully.

Fig. 2: Creating a diverging bar chart using the MSC operations.

3 OBJECT MODEL: SEMANTIC COMPONENTS

In MSC, a scene consists of semantic components including visual
elements, layouts, encodings, constraints, and view configuration. MSC

focuses on two kinds of datasets: tables and networks [30]. A table
consists of a set of data items (i.e., rows), and each item contains values
for a set of attributes (i.e., columns). A network also contains items,
in addition, it contains links that connect the items. A tree is a special
type of network and thus covered in MSC. A dataset can be used across
multiple scenes, and a scene can use multiple datasets.

Given an initialized scene and a dataset, we can create or modify a
visualization through the following semantic components: marks, data
scope, groups, auxiliary visual elements, visual encodings and scales,
algorithmic layouts, relational constraints, and view configuration.

3.1 Primary Visual Elements: Marks, Vertices & Segments
Marks serve as the fundamental building blocks of data visualization.
Fig. 3 shows the fourteen mark types supported in MSC, as well as
how certain types of marks can be derived by applying appropriate
operations to some primitive marks (detailed in Sec. 4). Marks can
represent either items or links [30]. For instance, a line mark can either
represent an item in a slope graph, or a link in a node-link diagram.

Definition 1 (Mark Type). The type of a mark m is defined as:
type(m)∈{rectangle, circle, line, path, text, image, band, area,
ring, pie, polyline, arc, polygon, geoPolygon}

Fig. 3: Marks supported in in MSC and derivation of marks.

Marks in the form of geometric shapes are composed of vertices and
segments. A rectangle, for example, consists of four vertices connected
by four line segments; a polyline consists of multiple vertices connected
by line or curve segments.
Visual Channels. Each type of mark has a set of associated visual
channels (e.g., width, height for rectangle, radius for circle) that deter-
mine the mark’s visual appearance. Vertices and segments in a mark
also have a set of associated visual channels (e.g., x & y positions of
vertices in an area mark, y position of the top and bottom segments in a
rectangle mark, and stroke width of segments in a polyline).

3.2 Data Scope
A mark represents one or more data items from a dataset. For example,
each rectangle mark in Fig. 1a represents a distinct data item with a
unique combination of age, response, and pct values. We define the
data scope of a visual element e to be the data item(s) represented by
the element: e.data.
Attribute Value and Aggregator. We use e.data[α] to denote the
value(s) of attribute α in element e’s data scope. The element can
be a single mark or a group of marks. For instance, if e refers
to the bottom left blue bar in Fig. 1a, then e.data["pct"] = 17; if e
refers to the group of four bars in the bottom row in Fig. 1(f), then
e.data["pct"] = [17,36,28,29]. In the latter case, since the attribute
("pct") is quantitative, we can define an aggregator (e.g., max, min,
count, sum) to compute a single value: max(e.data["pct"]) = 36, and
min(e.data["pct"]) = 17. For simplicity, we use e.data[α] in the rest

of this paper to refer to an element’s scope attribute value, irrespective
of the number of data items in the data scope.

3.3 Primary Visual Elements: Groups
MSC defines three types of groups: glyph, collection, and composite.
Like marks, groups are visual elements with associated visual channels
(commonly x and y positions) and can have data scopes.
Glyph. Multiple marks can be grouped to create a glyph. Fig. 4 shows
example glyphs in four different visualizations.

Definition 2 (Glyph). A glyph has the following properties:
1. All the marks in a glyph have the same data scope.
2. The data scope of a glyph is the same as the data scope of any
of its member marks.

Fig. 4: Example glyphs in (a) a violin plot, (b) the “Brain drain” visualiza-
tion [4], (c) a bullet chart, and (d) a box-and-whisker plot.

Definition 3 (Glyph Type). Given two glyphs Gi and G j, they
have the same type (i.e., type(Gi) = type(G j)) if the following
conditions are met:
1. Gi and G j have the same number of constituent marks.
2. for every mark ma in Gi, there exists a unique mark mb in G j
where type(ma) = type(mb), and vice versa.

Collection. The main content of a data visualization is typically a
collection of glyphs or marks (Fig. 5). No two members in a collection
can share the same data scope. For example, each rectangle mark in
Fig. 5(a) represents a data item with a unique month value. Collections
can be nested: the members of a collection are collections. In Fig. 1f,
we have four collections of stacked bars, and they are the members of a
larger collection that corresponds to the main chart content.

Definition 4 (Collection). A collection of visual elements has the
following properties:
1. the members in a collection must be all marks, all glyphs, or
all collections.
2. any two members ei and e j in a collection must have the same
type (per Definitions 1, 3, and 5): type(ei) = type(e j).
3. the data scopes of all the members in the same collection share
the same attributes.
4. the data scopes of any two members ei and e j in a collection
do not overlap: ei.data ∩ e j.data =∅ .
5. the data scope of a collection C is the union of the data scopes
of its members: C.data =

⋃
ei∈C ei.data .

Definition 5 (Collection Type). Two collections Ci and C j have
the same type (i.e., type(Ci) = type(C j)) if any member ei from
Ci and any member e j from C j have the same type: type(ei) =
type(e j).

Composite. A group of visual elements that is neither a glyph nor a
collection is considered a composite. Figure 6 shows two example com-
posites: (a) a scatter plot matrix (SPLOM), where each member (scatter
plot) is a collection of circle marks, and (b) a dashboard consisting of
two collections visualizing different fields of the same dataset: a scatter
plot on top and small multiples of waffle charts. The waffle chart small
multiples is also a nested collection. Note that the composite in either
Fig. 6a or Fig. 6b, is not a nested collection because condition 3 in

Fig. 5: (a) A collection of rectangles forms the main chart content of a
bar chart; (b) a collection of glyphs forms that of a box plot.

Fig. 6: (a) SPLOM is a composite of collections in the form of scatter
plots, (b) a dashboard is a composite of multiple collections.

Definition 4 is not satisfied. Members in a composite can be juxtaposed
(e.g., Fig. 6b) or superimposed (e.g., Fig. 7a, where a polyline and a
collection of rectangles share the same x- and y-axes) [19].

It is important to distinguish between glyph, collection, and compos-
ite because (1) no generative operation in MSC (Sec. 4.2) applies to
all types of groups (e.g., we can classify a collection but not a glyph),
and (2) knowing the relationships between different types of groups
allows us to more precisely describe their creation and dissection (e.g.,
when a composite consists of multiple collections, we can selectively
manipulate a subset of the collections).

3.4 Auxiliary Visual Elements
Auxiliary elements in a scene provide context and additional informa-
tion for understanding the visualization.
Reference Element. A visualization scene can contain reference ele-
ments like axes, legends, grid lines and labels, whose primary purpose
is to facilitate the reading and interpretation of the visual appearances
of marks, glyphs and collections.
Annotation. Text, shapes, cues [21], and images [36] are often used as
annotations to emphasize or explain specific data points, regions, or
trends in a scene. Annotations provide additional context, offer clarity,
and draw attention to specific parts of a visualization.

3.5 Visual Encodings and Scales
Visual encoding is a central component in data visualization, specifying
the mapping of attribute values to visual channel values. In MSC, a
visual encoding definition enc consists of a visual element e, a visual
channel ch, a data attribute α , and a scale λ :

enc := ⟨e,ch,α,λ ⟩
The visual element in the encoding definition can be a mark, a

vertex or segment, or a group. For example, in Fig. 1a the width
(visual channel) of each rectangle mark (visual element) encodes pct
(attribute); in Fig. 5b, the y coordinate (visual channel) of each top
whisker segment (visual element) encodes the 75th percentile of annual
income (attribute); in Fig. 7b, the x and y positions (visual channel) of
each collection (visual element) encode the approximate geographic
locations (attribute) of each state.

For each visual encoding, MSC requires the definition of a scale—a
function specifying how the domain (data values) map to the range
(visual channel values). For example, we have a scale in Fig. 1a
that maps pct (attribute) values to the width (visual channel) of each
rectangle mark: λ (pct value) = width value

Fig. 7: (a) a line graph showing moving averages of COVID cases and
a bar chart showing the raw case counts, (b) small multiples of bar
charts showing how each state’s partisan lean has shifted over the years,
where each bar chart is positioned based on its approximate geographic
location of the corresponding state.

Scales can be shared or synced. Figure 7a shows an example involv-
ing shared scales: the visualization scene is a composite consisting of
a polyline and a rectangle collection; the y-position encoding of the
vertices in the polyline shares the same scale as the height encoding
of the bars; the x-position encoding of the polyline vertices shares the
same scale as the x-position encoding of the bars. Two encodings can
share the same scale as long as the attributes have the same data type,
sharing a scale does not require two encodings having the same attribute
or channels. Figure 7b shows an example involving synced scales. The
visualization scene consists of 50 rectangle collections. Within each
collection, the x-positions of the rectangles encode the year attribute.
The scales across the 50 collections have the same domain (values of
the year attribute), but the ranges expressed in terms of x coordinates
are different. When editing this visualization, it is desirable that adjust-
ing the scale range of one collection automatically updates the other
collections to match. To achieve this, we can synchronize the scales
across all 50 collections, so that updating the range extent of one scale
will automatically adjust the range extents of the other scales.

3.6 Algorithmic Layouts
The spatial arrangement of visual elements is often achieved by visual
encodings involving the position channels (i.e., x and y coordinates).
In addition to such encodings, algorithmic layouts are often used to
specify the positions of visual elements. Examples of algorithmic
layouts include but are not limited to: grid (e.g., waffle chart), stack
(e.g., stacked bar chart), packing [32] (e.g., beeswarm plot), and spiral
(e.g., spiral plot). These layouts can be used to position not only marks
and glyphs, but also collections (e.g., a composite in the form of a
dashboard can use a tiling layout to arrange its member collections; a
nested collection such as a scatter plot matrix applies a grid layout to
its member collections). Each of these algorithmic layouts has a set
of associated parameters: for example, a grid layout can specify the
number of elements in a row/column and the direction of flow (e.g., top
to bottom or left to right).

3.7 Relational Constraints
MSC includes relational constraints to specify inter-element relation-
ships. The alignment constraint, for example, makes sure the anchors
of elements are arranged in a straight line. In Fig. 1a, the light blue bars
are aligned to the right, representing the divergence of opinions. To
achieve this spatial arrangement, we can either align all the light blue
bars to the right or all the light orange bars to the left. Another type of
constraint is the affixation constraint, which specifies the position of
one element relative to an anchor element. In Fig. 1a, we can describe
the positions of the white text labels as a result of affixing the text
marks at the center of the rectangles.

In addition, it is common to find constraints that specify the ordering
of visual elements in a data visualization scene. For example, in a waffle
chart, the ordering of rectangle marks in the collection together with the
grid layout parameters determines the eventual visual appearance; in a
connected scatter plot, the order of vertices on a polyline is determined
by a temporal attribute and determines how the vertices are connected

by segments. Ordering can also be specified along the z-dimension,
which determines the order in which overlapping visual elements are
drawn.

3.8 View Configuration
The view configuration component provides a vantage point of a data
visualization scene with configurable attributes like focus point (center
of the view port), field of view (extent visible through the view port),
zoom level, and rotation. Visualizations such as MatrixWave [53] and
GeneaQuilts [5], for example, apply rotation to the scenes.

3.9 Alternative Scene Descriptions
Three of the semantic components described above can determine the
spatial positions of visual elements: visual encodings, algorithmic
layouts, and relational constraints. It is possible to describe the same
data visualization scene in multiple ways, each involving a different
set of components. For example, we can describe the vertical bar chart
in Fig. 5a as a collection of rectangles with a grid layout (one row, 12
columns) where the rectangles are sorted by the month attribute, or
a collection of rectangles whose x positions are bound to the month
attribute. Both descriptions are valid, but we should not include both
the grid layout and the x encoding in the same description to describe
the spatial arrangement of the bars along the horizontal direction.

4 PROCEDURE: GENERATIVE & MODIFICATIVE OPERATIONS

Given the definitions of semantic components in Sec. 3, MSC includes
two kinds of operations on these components: 1) generative opera-
tions that create new visual elements (i.e., marks, glyphs, collections,
composites) or remove existing ones based on data items and/or links,
and 2) modificative operations that modify existing visual elements’
properties or change the relationships between them.

Sec. 4.1 and Sec. 4.2 discuss generative operations: each operation
consists of a descriptive name, an input visual element, an output
element, and parameters. Most generative operations in MSC require
all these parts to be specified. The input element and parameters may
be optional for a few operations in Sec. 4.1. We use the following form
to represent a generative operation, similar notations have been used by
generative grammars in linguistics [12] and shape modeling [31].

name(parameters) : input element ; output element

Sec. 4.3, Sec. 4.4, and Sec. 4.5 discuss modificative operations,
where each operation is expressed either as value assignment in the
form of element.property = value , where a visual element’s property
is set to a constant, or as a mathematical constraint in the form of
element1.property = f(element2.property,element3.property, ...) , where
a function f defines the relationships between the property values of
multiple elements, usually expressed using arithmetic operators.

4.1 Generative Operations: Initialize Data and Elements
The first steps of creating a data visualization involve initializing a
scene and importing data. In the operations below, := denotes “defined
as”, + denotes “one or more”, and | denotes “or”:

createScene() : ; scn

importData(csvFile) : ; table := items and attributes

importData(jsonFile) : ; network := items, attributes and links

We can then create primitive marks by specifying their types and prop-
erties, a scene is required as the input object:

createMark(type,props) : scn ; mark := rect|circle|line|path|txt|...
One or more marks can be grouped to create a glyph:

createGlyph() : mark+; glyph

4.2 Generative Operations: Join Visual Elements with Data
With primitive marks and data tables, we can now derive additional
types of marks and create collections through graphics-data join op-
erations. MSC specifies six such operations: repeat, divide, densify,
classify, repopulate, and stratify.
Repeat. The repeat operation takes a mark, a glyph, or a collection as
input and creates a collection of marks, glyphs, or collections (Fig. 8).

Fig. 8: Three operations for graphics-data join: repeat, divide, and
densify. Here each input mark is joined with five unique attribute values.

This operation accepts a dataset and an ordinal or nominal attribute
name in the dataset as its parameters. For example, in Fig. 2b, we repeat
a rectangle by the age attribute. Since there are four unique age values
in the data (below 30, 30 - 50, 50 - 70, above 70), we get a collection of
four rectangles (Fig. 2b). The data scope of the first rectangle consists
of all the rows with “below 30” as the age value, and so on.
Formally, when the dataset is a table, the output of a repeat operation
is a collection C = {e1,e2, ...,en}, where each member visual element
ei has the same type as the input element. The number of elements in
C is equal to the number of unique values in the specified parameter
attribute α . For each unique value vi in α , there exists a visual element
ei in C such that ei.data[α] = vi.

repeat(table,attr) : mark ; mark collection

repeat(table,attr) : glyph; glyph collection

repeat(table,attr) : collection; nested collection

When the dataset is a network, let nd denote a visual element that
represents an item, and lk denote a mark (usually a line, a path, an arc,
or a band) that represents a link:

repeat(network,attr) : [nd, lk]; [nd collection, lk collection]

Divide. The divide operation splits a mark into a collection of smaller
marks. This operation accepts a data table, and an ordinal or nominal
attribute name in the table as its parameters. An additional orientation
parameter is needed when the input mark type is rectangle or circle.
The mark type in the output collection depends on the input mark type
and the orientation.

divide(table,attr,orientation) : rect ; rect collection

divide(table,attr,orientation) : circle; pie collection | ring collection

divide(table,attr) : line; line collection

divide(table,attr) : pie ; arc collection

divide(table,attr) : ring ; arc collection

For example, applying divide on a circle along the angular orientation
produces a collection of pies, and along the radial orientation produces
a collection of rings (Fig. 8). The graphics-data joining mechanism
is similar to that of the repeat operation: tuples sharing the same
attribute value are assigned as the data scope of each mark in the
output collection.

Densify. In a line chart, area chart, or radar chart, we need to assign
data scopes to the vertices of the geometric marks. MSC introduces the
densify operation to facilitate the generation of vertices and the compu-
tation of data scopes. The densify operation transforms a rectangle into
an area mark, a circle into a polygon, and a line into a polyline (Fig. 8)
by adding vertices along the border of the input mark, assigning a data
scope to each vertex, and replacing curve segments with line segments.
This operation accepts a data table and an ordinal or nominal attribute
name in the table as its parameters. An additional orientation parameter

is needed when the input mark is a rectangle: vertices are added along
parallel borders based on the specified orientation.

densify(table,attr) : line; polyline

densify(table,attr) : circle; polygon

densify(table,attr,orientation) : rect; area

The graphics-data joining mechanism is similar to that of the repeat
operation and the divide operation. Each vertex represents a unique
value in the attribute.

Classify. The classify operation groups visual elements inside a col-
lection into multiple collections. This operation accepts an ordinal or
nominal attribute name as its parameter.

classify(attr) : collection; nested collection

In Fig. 9, we classify a collection of eight rectangle marks by the
region attribute, resulting in a nested collection consisting of four
member collections, each of which consists of two rectangle marks.

Fig. 9: Classifying a collection resulting in a nested collection. The text
on the left of each mark denotes its data scope.

Formally, given an input collection C = {e1,e2, ...,en}, classifying
its members by an ordinal or nominal attribute α results in a nested
collection, where the members of the input collection C are now
collections: C = {c1,c2, ...,ck}. For each unique value vi in the
specified parameter attribute α , there exists a visual element ci in
C such that ci.data[α] = vi. Each ci contains some of the origi-
nal members (i.e., e1,e2, ...,en) such that for every member e j in ci,
ci.data[α] = e j.data[α].

Repopulate. A scene can be treated as a template, where the visual-
ization design is applied to a new dataset. The repopulate operation
enables such functionalities by re-generating visual elements inside an
existing collection based on a new attribute in a new dataset. This op-
eration accepts pairs of ordinal/nominal attribute names (one from the
new dataset and the other from the existing dataset) as its parameters.

repopulate({(attrnew,attrcurrent)},tablenew) : collection; collection′

Figure 10 shows how to change the underlying dataset of a grouped
chart from a table about regional sales to a new table about countries’
populations using the repopulate operation. The text on the left of each
mark denotes its data scope.

Fig. 10: Repopulating a nested collection where the number of member
marks in the result changes based on the new dataset.

Formally, given an input collection C = {e1,e2, ...,en}, after applying
the repopulate operation by an attribute α from dataset T , we have
a new collection C′ = {e′1,e

′
2, ...,e

′
m}. Every element e′j in C′ has the

same type as any member ei in the input collection C, and the number
of elements in C′ is equal to the number of unique values in α . For
each unique value vi in α , there exists a visual element e′i in C′ such
that e′i.data[α] = vi.

Stratify. The stratify operation takes a mark as input and generates
a collection of marks to be used as a layered representation of hier-
archical data. This operation accepts a tree dataset (a special type of
network dataset) and an ordinal or nominal attribute in the dataset as
its parameters. The layering of generated marks is determined by the
links connecting the items in the tree dataset. When the input mark is a
rectangle, an orientation parameter is needed to specify the direction
of layering. Figure 11 shows that stratifying a rectangle and a circle
results in an icicle plot [22] and a sunburst chart [45] respectively.

stratify(tree,attr,orientation) : rect ; rect collection

stratify(tree,attr) : circle; arc collection

Fig. 11: Applying the stratify operation to a rectangle mark or a circle
mark for a tree dataset.

4.3 Modificative Operations: Specify Channel Values

Apply/Remove Visual Encoding. Mapping attribute values to visual
channel properties is a fundamental task in data visualization. For
instance, the width of each rectangle mark in Fig. 2f encodes the
pct value in the mark’s data scope. Specifying such an operation in
MSC requires the concept of peers. The peers of a visual element e,
denoted by Pe, is a set of all the visual elements generated together
with e through the repeat, divide, densify, classify, repopulate, and
stratify operations in Sec. 4.2. For instance, all the four rectangle
marks generated by repeat in Fig. 2b are peers of each other; all the
sixteen rectangle marks generated by divide in Fig. 2c are peers of each
other; all the vertices generated by a densify operation are peers of each
other. Binding a data attribute α with a channel of a visual element e
based on a scale λ is expressed as:

∀ei ∈ Pe,ei.channel= λ (ei.data[α])

In MSC, the element e can be a vertex, a segment, a mark, a glyph,
or a collection. This operation applies to both the initial mapping
declaration as well as the update of channel values when the underlying
data values for an existing mapping change.
Customize Scale. A scale directly determines how data attribute values
are transformed into visual channel values. Assuming the data attribute
values are fixed, we can specify the desired channel values by customiz-
ing the type (e.g., linear, power, log), domain (e.g., start from zero),
and range (e.g., range extent for size, scheme for color) of scales.
Set Channel Values Directly. In the absence of any data attribute
bound to a visual element’s channel, the value of that channel can be
freely changed. It is a common practice to modify the channel values
for all the marks in a data visualization. For instance, the height of
each rectangle mark in Figure 2(f) can be set to a constant k. Such an
operation in MSC is expressed as:

∀ei ∈ Pe,ei.channel= k

In certain cases, we may want to set the channel value for a specific vi-
sual element (e.g., for annotation purposes, to translate a visual element
in design exploration) without affecting its peers, such an operation is
expressed as: e.channel= k

4.4 Modificative Operations: Apply Layouts & Constraints

Apply Layout. In MSC, layouts are properties of visual element groups,
and can be directly changed. A layout type and a set of associated

parameters are required for a group G:
G.layout= {type,parameters}
Similar to the operation to set channel values, we can set the layout

of multiple groups that are peers to each other:
∀Gi ∈ PG,Gi.layout= {type,parameters}

Update Layout Parameter. A parameter θ of an existing layout can
be dynamically set to a new value v. For example, we can change the
orientation of a stack layout from horizontal to vertical, or change the
number of rows in a grid layout:

G.layout.θ = v

Apply Relational Constraint. This operation applies to both initializ-
ing a new relational constraint as well as updating the channel values
to maintain an existing constraint. Relational constraints in MSC are
expressed using arithmetic operators. For example, to align the left
sides of two marks’ bounding boxes:

mi.bbox.left=mj.bbox.left

To affix the bottom left corner of a mark’s bounding box with reference
to the top right corner of another mark’s bounding box:

mi.bbox.left=mj.bbox.right+dx

mi.bbox.bottom=mj.bbox.top+dy

In data visualization, relational constraints are usually applied to
multiple pairs of visual elements. For instance, to attach a text label to
the center of every rectangle mark in Fig. 1a:

∀recti ∈ Prect, ∀texti ∈ Ptext,

recti.x= texti.x and recti.y = texti.y,

where recti.data= texti.data

4.5 Modificative Operations: Configure View
Finally, view configuration of a scene can be expressed by setting its
properties, for example:

scene.view.rotation= 90◦

scene.view.zoom ∗= 1.2

4.6 Chaining Operations
A chart construction or manipulation task often requires chaining mul-
tiple operations described above. Here we provide two examples where
the operations can be combined to achieve higher-level tasks.
Chaining Generative Operations. Concatenating these graphics-data
join operations will produce nested structures. For instance, in Fig. 1,
we perform repeat first followed by divide to obtain a stacked bar
structure; applying the densify operation on a rectangle followed by the
repeat operation yields a structure for small multiples of area charts.
Chaining Modificative Operations. Modifying the design of a chart
may involve more than one operation. For instance, we may want
to change the vertical bar chart in Fig. 12a into a horizontal bar
chart in Fig. 12e, which can be accomplished through the follow-
ing sequence of operations: Set Bar Height to Constant (Fig. 12b),
Bind Attribute to Width (Fig. 12c), Update Grid Layout Parameter
(Fig. 12d), and Customize Width Scale (Fig. 12e).

Fig. 12: Chaining modificative operations to change the orientation of a
bar chart.

5 IMPLEMENTATION: MASCOT.JS

We implemented a JavaScript library, Mascot.js, based on the theoret-
ical descriptions on the components (Sec. 3) and operations (Sec. 4)
in MSC. A catalog of visualization examples created using Mascot.js

is available at https://mascot-vis.github.io, which showcases
more than 60 unique data visualization designs, covering commonly
used chart types as well as more esoteric designs like cycle plot [39]
and treemap bar chart.

API Design. Mascot.js provides global functions to import datasets,
initialize scene objects, and create layouts, The generative operations
are invoked as scene methods, operating within the context of that
scene. Modificative operations applied to a single element are invoked
through the element’s setter method, whereas modificative operations
applied to multiple elements or an element’s peers are invoked through
the appropriate methods in the scene object. The details on the API
design are available in our short paper on a prior implementation of
MSC called Atlas.js [24].

Smart Defaults. Mascot.js chooses smart default values if certain
properties or components are not specified. For example, when creating
new marks, default values for various channels are applied depending
on the mark type. When a divide is performed, Mascot.js will apply a
default layout to the resulting collection depending on the mark type.
For instance, dividing a rectangle will also apply a stack layout to the
generated smaller rectangles.

Creating Auxiliary Elements. Mascot.js provides convenience meth-
ods to create axes and legends. Users only need to specify the channel,
attribute, and preferred properties such as position and visibility.

Rendering. Unlike libraries such as D3 [8] where visualization objects
are represented as Document Object Model (DOM) nodes, Mascot.js
represents visualization scenes as JavaScript objects and decouples
scene abstractions from rendering. All the objects in a scene can be
printed to the console and inspected without rendering. To display these
objects, we need to create renderers. Mascot.js supports two types of
renderers: SVG and WebGL.

Scene Serialization and Reconstruction. Scenes created using Mas-
cot.js are JavaScript objects and can be serialized as JSON files. Mas-
cot.js provides the functionality to ingest such JSON files and recon-
struct the scene objects so that they can continue to be modified using
MSC operations. The JSON files can also serve as templates: new
visualizations can be created based on new datasets by applying a series
of repopulate and apply visual encoding operations on the templates.

6 APPLICATIONS

In this section, we examine the potential of MSC as a foundation
for three applications through case studies: interactive authoring of
static representations, deconstructing and reusing existing charts, and
augmenting static visualizations with animated behaviors.

6.1 Interactive Chart Authoring

Multiple research projects seek to design and build interactive authoring
tools for users to construct static data visualizations in a WYSIWYG
(What You See is What You Get) interface [20, 27, 37, 38, 40, 48]. To
demonstrate the viability of MSC in powering real-world authoring ap-
plications, we implemented a new version of Data Illustrator [27] based
on Mascot.js, which is available at https://data-illustrateur.
github.io/. The benefits of using MSC as the core computational
representation are twofold. First, thanks to a more complete theoret-
ical formulation offered by MSC on data visualization components
and operations, the new version of Data Illustrator is more expressive,
supporting a range of data visualization designs that were not possible
in the original version, including but not limited to rose chart, area
chart, icicle plot, sunburst chart, and network diagrams. Second, MSC
abstracts away the low-level complexities in scene manipulation and
reduces development time and effort. The original Data Illustrator
was built on Paper.js [23], which provides general scene graph abstrac-
tion support without visualization-specific components and operations.
Compared to this original implementation involving 22632 lines of
code in JavaScript, the new Data Illustrator implementation based on
Mascot.js has only 5519 lines of code—more than four times reduction.

6.2 Chart Deconstruction and Reuse
Since constructing visualizations from scratch can still require sig-
nificant knowledge and skills in using a particular authoring tool, re-
searchers have also investigated methods and systems that automatically
analyze existing visualizations and transform them into reusable tem-
plates [9, 11, 13, 17, 18, 33, 34].

We investigated the potential of MSC as a computational representa-
tion for visualization reuse in the Mystique system [9]. Mystique takes
existing rectangle-based visualizations in the SVG format as input,
and extracts scene components including reference elements (axis &
legend), groups (collection & glyph), algorithmic layouts (grid, stack,
packing), and relational constraints (alignment & affixation). The ex-
tracted components can then be manipulated and infused with a new
dataset to produce a new scene through operations such as repopulate,
apply visual encoding, and apply layout & constraint. Mystique pro-
vides a wizard interface to guide users in specifying the mappings
between the components and the new dataset, and produce immediate
visual feedback by updating the input example with the incrementally
specified mappings. The benefits of using MSC as the computational
representation for visualization deconstruction and reuse include the
following: 1) we can directly establish correspondence between SVG
elements and scene components, without having to go through an inter-
mediate formal language, 2) the direct representation of scenes allows
us to dive deep into complex layout structures such as nesting and small
multiples, and 3) the intermediate scene results generated in the reuse
process do not have to conform to the semantics and syntax of a formal
language, allowing users focus on one mapping at a time.

6.3 Animating Static Visualizations
Besides authoring and reusing static visualizations, there is growing
interest in research works to augment static visualizations with inter-
active and animated behaviors [14, 15, 44, 47, 50, 54]. To enable such
augmentation, there exists two approaches to ingest the static visu-
alizations. The first approach requires that the static visualizations
must be created by a particular tool. For example, Data Animator [47]
adds animated behaviors to static visualizations created using Data
Illustrator [27], and Lyra 2 [54] turns static visualizations composed
using Vega-Lite [42] into interactive ones. Such assumptions ensure
that the semantic components are readily usable for behavior specifi-
cation. Alternatively, we can broaden the scope to support input static
visualizations in a specific format generated by multiple tools, but the
visualizations need to be annotated with semantic component labels.
For instance, CAST [14] is an animation authoring tool and works with
SVG charts, provided that these charts are annotated with labels in a
format called dSVG (data-enriched SVG) [15]. The dSVG format used
by CAST can be considered an attempt to formulate a computational
representation, however, it is not well documented and is a one-time
solution for this specific task of animation authoring.

We are interested in understanding how well a more generic com-
putational representation like MSC supports animation behavior spec-
ification. In this case study, we focus on two existing systems: Data
Animator and CAST. As mentioned earlier, Data Animator requires
static visualizations to be created using Data Illustrator, and MSC’s
component formulation is a more complete account and encompasses
the component model of Data Illustrator, it is thus trivial to convert
visualizations expressed using MSC into the Data Illustrator format.
CAST, on the other hand, uses dSVG as the underlying computational
representation. Unlike MSC, dSVG does not explicitly describe the
hierarchical relationships between scene elements, and adds three prop-
erties “id”, “class”, and “datum” for each mark. Based on the grouping
and data scope components in MSC, we were able to develop scripts
that convert data visualization scenes created using Mascot.js into the
dSVG format, and verified that the resulting scenes in the dSVG for-
mat worked well with the CAST system. The supplemental materials
contain the conversion scripts as well as video demos demonstrating
the specification of animation behaviors. This exercise validates MSC
as a computational representation for augmenting static visualizations,
demonstrating its compatibility with current animation authoring tools
and its potential as a foundation to develop similar systems in the future.

https://mascot-vis.github.io
https://data-illustrateur.github.io/
https://data-illustrateur.github.io/

Table 1: A comparison of the primitives (i.e., components and operations) defined in various data visualization frameworks. A ✓ means the primitive
is included in the framework, but the paper does not formally name it. If a primitive is named, we include the name used in the paper in the
corresponding cell. A ✗ means the primitive is not included in the paper.

MSC Protovis [7] D3 [8] Vega [3] Data Illustrator [27] Charticulator [38] Bluefish [35] Chartreuse [13] AutoTimeline [11] InfoMotion [50]

C
om

po
ne

nt
s

mark mark mark mark mark mark element visual element mark visual element
data scope ✗ data ✗ data scope ✓ ✗ ✗ ✗ ✗

glyph ✗ ✗ ✗ group glyph group unit ✗ repeating unit
collection panel ✗ ✗ collection ✓ group ✗ layout group
composite panel ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

reference element rule axis, legend axis, legend axis, legend axis, legend ✗ ✗ ✗ ✗

annotation ✗ ✗ ✗ ✗ ✓
connectedness,
common region

embellishment annotation connectors

visual encoding ✓ ✗ ✓ ✓ visual encoding ✓ visual element visual encoding ✗

scale scale scale scale ✓ scale ✗ ✗ scale ✗

algorithmic
layouts

layouts layouts layouts layouts
constraint-based
layout

✗
unit
layout

representation
unit
layout

relational constraints anchor ✗ ✗ ✓ ✓ perceptual relation unit layout ✗ unit layout
view configuration ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

O
pe

ra
tio

ns

repeat ✗ join ✗ ✓ ✓ ✓ ✗ ✗ ✗

divide ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗

densify ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

classify ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

repopulate ✗ ✗ ✓ ✗ ✓ ✗ repeat ✓ ✗

stratify ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

apply visual encoding ✓ ✓ ✓ ✓ ✓ ✓ morph, recolor ✓ ✗

customize scale ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

set channel values ✓ ✓ ✓ ✓ ✓ ✓ fix ✗ ✗

apply layout ✓ ✓ ✓ ✓ ✓ ✓ partition ✓ ✗

update layout
parameters

✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

apply relational
constraint

✓ ✗ ✗ ✓ ✓ ✓ move ✗ ✗

configure view ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

7 COMPARISON WITH RELATED FRAMEWORKS

As discussed in the introduction, the goal of proposing MSC as a new
computational representation for data visualization scenes is to support
various applications for constructing, decomposing, and augmenting
visualizations. While Mascot.js can be considered yet another data
visualization library, its usability and learnability as a domain-specific
language are not our primary concern. Instead, we are interested in
understanding the strengths and weaknesses of MSC as a theoretical
framework in enabling various applications. To evaluate MSC, we
first present an overall comparison with nine visualization frameworks
in terms of component and operation abstractions. We then focus on
more in-depth comparisons with three classes of related work: DOM
manipulation libraries (D3), declarative languages (e.g., Vega/Vega-
Lite), and algebraic frameworks (e.g., VizQL).

7.1 Component and Operation Abstractions
Many visualization libraries and tools have proposed scene abstrac-
tions for various applications. Protovis [7] argues that designers should
be able to think in terms of graphical marks, not abstract specifica-
tions to improve accessibility, and MSC shares the same stance. The
components and operations in MSC are directly informed by recent
visualization authoring frameworks and tools [41]. Specifically, the
graphics-centric approach in MSC is consistent with the lazy data bind-
ing approach in Data Illustrator [27], and a few operations in MSC
are derived from the repeat and partition operators in Data Illustra-
tor [27]; Charticulator’s constraint-based layout approach [38] inspired
the modificative operations in MSC.

To assess the completeness of abstraction, we compare MSC with
nine visualization frameworks (Tab. 1), focusing on visual represen-
tations instead of interaction or animation. Among these, six were
developed primarily for visualization creation: Protovis [7], D3 [8],
Vega [3], Data Illustrator [27], Charticulator [38], and Bluefish [35];
two were developed primarily for infographics reuse [11, 13]; and one
was developed for augmenting visualization with animation [50]. In
general, MSC offers a more complete set of components and operations
(Tab. 1). It is important to note that completeness is not equivalent to
expressiveness: a missing component or operation in a framework does
not mean that the corresponding visualization feature cannot be realized
using the framework. For example, D3 provides very few abstractions
but is highly expressive due to its reliance on the DOM as the scene

representation. In addition, due to the different philosophies and ap-
proaches adopted by these frameworks, a direct one-to-one comparison
is not always possible. For example, Vega [3] does not provide some
generative operations because it is essentially a declarative specification
language, not a scene representation. We elaborate on the differences
between MSC and D3 [8] in Sec. 7.2 and MSC and Vega in Sec. 7.3.

7.2 Data-Driven Documents (D3)
The main goal of D3 [8] is to support data-driven manipulation of doc-
uments represented using the DOM (document object model) standard.
D3 provides very limited scene abstraction for data visualization, offer-
ing only five types of components (mark, data, axis/legend, scale, and
layout). Everything else needs to be represented and manipulated as
SVG elements through low-level methods. Such an approach enables
an unparalleled level of expressiveness compared to other visualiza-
tion frameworks. However, neither the low-level JavaScript code nor
the resultant SVG scene graph serve as effective computational repre-
sentations for applications beyond scene assembly. For instance, D3
provides no encapsulation for components like visual encodings or
relational constraints: elements’ visual properties need to be computed
using low-level code, and any subsequent manipulation of the SVG
scene graph will not automatically update the element properties to pre-
serve the encodings or constraints. The lack of higher-level abstraction
makes it challenging to build graphical user interfaces on top of D3 to
support interactive authoring from scratch; to date, no such tools have
been created. Similarly, without high-level encapsulation of compo-
nents and operations, efforts to deconstruct and reuse D3 visualizations
mostly focus on visual styles [17, 18], and cannot be easily extended to
structural features like layouts [9].

7.3 Declarative Specifications
Compared to D3, visualization grammars such as ggplot2 [51] and
Vega [42, 43] provide higher-level and more systematic abstractions.
In these approaches, the abstractions are in the form of declarative
specifications that succinctly describe the data transformations and
visual encodings in a visualization. Most of these declarative specifi-
cations are implementations of the Grammar of Graphics [52], which
defines grammatical components as “rules for constructing graphs math-
ematically”. In contrast, MSC describes the semantic structures and
operations from a graphics-centric perspective. For example, the Gram-

mar of Graphics describes a pie chart as the result of mapping data
categories to rectangles and performing a polar transformation [52];
under the MSC paradigm, we may describe the process as dividing a
circle and assigning categories to each pie, which is more interpretable.

Unlike MSC and D3, declarative specifications are not represen-
tations of scenes. They are descriptions of what the scenes should
be like—as Wilkinson put it, “A scene and its description are differ-
ent” [52] (p.7). Specifications need to be compiled into scenes, which
are typically represented and rendered using SVG. While grammars
like Vega do have internal representations of scenes, they hide details
such as the structural relationships between visual elements from users.
Any modification to the scene must be done by changing the specifica-
tion, and users have no means to select or modify scene components
directly. We elaborate on the implications of this difference for two
sample applications below:
Interactive Authoring. In Lyra [40], Vega serves as the underlying
computational representation: user interaction in the GUI translates to
changes in an underlying specification, which is dynamically compiled
to a visualization scene (Fig. 13a). In comparison, MSC provides a
more direct experience in scene manipulation where the intermediate
specifications are eliminated (Fig. 13b). The MSC approach has several
potential benefits: 1) during the authoring process, users can more
freely manipulate the visualization scene, which may not conform
to the semantics and syntax of a declarative specification language.
Consequently, the authoring interface affords less restricted creative
exploration and tinkering [28], 2) the explicit conceptualization of
semantic components such as collection and constraints afford direct
manipulation interaction designs, and 3) there is no need to re-compile
the entire specification every time a minor scene modification happens,
which can lead to a more responsive and lower-latency experience.

Fig. 13: Interactive authoring using (a) declarative specifications and (b)
MSC as the underlying computational representations.

Visualization Deconstruction and Reuse. A typical processing
pipeline for this application involves two stages: 1) reverse engineer an
existing data visualization to understand its structure, 2) generate a new
visualization of a new dataset based on this understanding. The input vi-
sualizations are usually in a raster image or vector graphics format. The
output of the reverse engineering stage and the input of the generation
stage can be expressed either as declarative specifications (e.g., [33])
or scene abstractions (e.g., [9, 11, 13]). In Mystique [9], we demon-
strated how the reconstruction results for SVG charts with complex
layout structures can be directly expressed using MSC, and the scene
components can be dynamically updated through MSC operations to
infuse with a new dataset (Fig. 14b). If declarative specifications were
instead chosen as the computational representation, deconstruction and
reuse would be more challenging: we would need to convert the de-
construction results into an intermediate specification (Fig. 14a), and
dynamically generate partial specifications during the reuse process.
Currently, no such solutions exist for charts with advanced layouts like
small multiples and nested grouping.

7.4 Algebraic Frameworks
VizQL [16] is a formal language used by Tableau [2] to describe data
visualizations. VizQL allows the specification of table configurations
(i.e., rows and columns) as well as visual encodings within each pane.
Specifically, table configurations are expressed using an algebra, where
the operands are attributes (categorized into dimensions and measures)
and the operators include cross, next, and concatenation [46].

Fig. 14: Deconstructing and reusing existing visualizations using (a)
declarative specifications and (b) MSC as the underlying computational
representations.

The operations in MSC can be considered algebraic: the computation
of data scopes when chaining the repeat, divide, and densify operations
is equivalent to the nest operator in VizQL; the classify operation in
MSC is similar to the group by operation in relational algebra; and the
repeat operation for network data is equivalent to the concatenation
of the create nodes and create connections in the Ploceus framework
[25, 26]. However, in MSC operations, the primary operands are visual
elements, and the attributes are secondary. The generative operations
in MSC describe how marks and groups are derived from input visual
elements; the modificative operations in MSC describe the algebraic
relationships between visual channel properties.

The atttribute-centric algebra in VizQL represents a top-down ap-
proach to visualization generation: one starts from table configurations,
then proceeds to mark choice and visual encodings in each table pane.
This approach enables easy and systematic specifications of complex
nested designs like small multiples. In contrast, the graphics-centric
algebra in MSC is bottom-up: we start from marks and glyphs, and
proceed to higher-level groupings. Additional effort is needed to apply
the appropriate layouts to achieve table-based designs. In VisQL, since
visual elements are not treated as first-class citizens, describing visual-
izations that do not fit neatly into a row-and-column metaphor can be
challenging. For example, specifying glyph-based plots (e.g., box plot,
dumbbell chart) involves non-trivial workarounds with custom attribute
derivation and calculations.

8 CONCLUSION AND FUTURE WORK

To support data visualization applications such as reverse engineering
and authoring, a computational representation is needed to abstract the
components and their manipulations in a visualization scene. Manipu-
lable Semantic Components (MSC) provide this by specifying a unified
object model for the components in a visualization scene and a set of
operations to generate and modify the components.

In future work, we plan to support both design-time and run-time
interactions in MSC. The current focus of MSC is on design-time manip-
ulation (e.g., construction and editing of visual representations); how-
ever, letting users specify run-time interactive behaviors (e.g., brushing,
filtering) tailored for different scenarios (e.g., exploratory analysis,
scrolly-telling) is essential. Designing a unified architecture for both
kinds of interactions remains a challenge. One potential solution is
to model the relationships between the components as a dependency
graph: whenever the value of a variable (e.g., a component’s channel)
is changed, the architecture should automatically propagate the change
and update the values of other dependent variables. To capture the
dependencies, we may formulate the relationships between components
as constraints [38, 49]: for example, the generative operations, layout
operations, and encoding-related operations are one-way constraints,
while operations that apply affixation and alignment can be described
as multi-way constraints. Future research can focus on how to model
and solve such constraint-based dependency graphs.

Another interesting future direction is to explore how to represent
and learn design knowledge from visualizations expressed using MSC
components. For example, Draco [29] formalize and extract design
knowledge from declarative specifications, and we are interested in
understanding if Draco can be easily extended to work on scene rep-
resentations such as MSC, and if novel methods can be developed to
model design knowledge.

ACKNOWLEDGMENTS

Zhicheng Liu and Chen Chen were supported in part by NSF grant
IIS-2239130.

REFERENCES

[1] Scalable Vector Graphics (SVG) 2. https://www.w3.org/TR/SVG2/. 1
[2] Tableau: Business Intelligence and Analytics Software. 9
[3] Vega: a visualization grammar, Apr. 2021. https://github.com/vega/vega.

8
[4] Accurat. Brain drain, Jan. 2014.

https://www.behance.net/gallery/14187547/Brain-drain. 3
[5] A. Bezerianos, P. Dragicevic, J.-D. Fekete, J. Bae, and B. Watson. Ge-

neaQuilts: A System for Exploring Large Genealogies. IEEE Transactions
on Visualization and Computer Graphics, 16(6):1073–1081, Nov. 2010.
doi: 10.1109/TVCG.2010.159 4

[6] A. Bigelow, S. Drucker, D. Fisher, and M. Meyer. Iterating between Tools
to Create and Edit Visualizations. IEEE Transactions on Visualization and
Computer Graphics, 23(1):481–490, Jan. 2017. doi: 10.1109/TVCG.2016
.2598609 1

[7] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.
IEEE Transactions on Visualization and Computer Graphics, 15(6):1121–
1128, 2009. Publisher: IEEE. doi: 10.1109/TVCG.2009.174 8

[8] M. Bostock, V. Ogievetsky, and J. Heer. D3: data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011. Publisher: IEEE. doi: 10.1109/TVCG.2011.185 1, 7, 8

[9] C. Chen, B. Lee, Y. Wang, Y. Chang, and Z. Liu. Mystique: Deconstructing
SVG Charts for Layout Reuse. IEEE Transactions on Visualization and
Computer Graphics, 30(1):447–457, 2023. Publisher: IEEE. doi: 10.
1109/TVCG.2023.3327354 7, 8, 9

[10] C. Chen and Z. Liu. The State of the Art in Creating Visualization Corpora
for Automated Chart Analysis. Computer Graphics Forum, 42(3):449–470,
2023. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14855.
doi: 10.1111/cgf.14855 1

[11] Z. Chen, Y. Wang, Q. Wang, Y. Wang, and H. Qu. Towards Automated
Infographic Design: Deep Learning-based Auto-Extraction of Extensible
Timeline. IEEE Transactions on Visualization and Computer Graphics,
26(1):917–926, Jan. 2020. doi: 10.1109/TVCG.2019.2934810 1, 7, 8, 9

[12] N. Chomsky. Syntactic Structures. Walter de Gruyter, 2002. 4
[13] W. Cui, J. Wang, H. Huang, Y. Wang, C.-Y. Lin, H. Zhang, and D. Zhang.

A Mixed-Initiative Approach to Reusing Infographic Charts. IEEE Trans-
actions on Visualization and Computer Graphics, 28(1):173–183, Jan.
2022. Conference Name: IEEE Transactions on Visualization and Com-
puter Graphics. doi: 10.1109/TVCG.2021.3114856 1, 7, 8, 9

[14] T. Ge, B. Lee, and Y. Wang. CAST: Authoring Data-Driven Chart Anima-
tions. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, CHI ’21, pp. 1–15. Association for Computing Ma-
chinery, New York, NY, USA, May 2021. doi: 10.1145/3411764.3445452
7

[15] T. Ge, Y. Zhao, B. Lee, D. Ren, B. Chen, and Y. Wang. Canis: A High-
level Language for Data-Driven Chart Animations. Computer Graphics
Forum, 39(3), 2020. doi: 10.1111/cgf.14005 1, 7

[16] P. Hanrahan. VizQL: a language for query, analysis and visualization.
In Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, pp. 721–721, 2006. doi: 10.1145/1142473.1142560
9

[17] J. Harper and M. Agrawala. Deconstructing and restyling D3 visual-
izations. In Proceedings of the 27th annual ACM Symposium on User
Interface Software and Technology, UIST ’14, pp. 253–262. Association
for Computing Machinery, New York, NY, USA, Oct. 2014. doi: 10.
1145/2642918.2647411 7, 8

[18] J. Harper and M. Agrawala. Converting basic D3 charts into reusable style
templates. IEEE Transactions on Visualization and Computer Graphics,
24(3):1274–1286, 2017. Publisher: IEEE. doi: 10.1109/TVCG.2017.
2659744 7, 8

[19] W. Javed and N. Elmqvist. Exploring the design space of composite
visualization. In 2012 IEEE Pacific Visualization Symposium, pp. 1–8.
IEEE, 2012. doi: 10.1109/PacificVis.2012.6183556 3

[20] N. W. Kim, E. Schweickart, Z. Liu, M. Dontcheva, W. Li, J. Popovic,
and H. Pfister. Data-driven guides: Supporting expressive design for
information graphics. IEEE Transactions on Visualization and Computer
Graphics, 23(1):491–500, 2016. Publisher: IEEE. doi: 10.1109/TVCG.
2016.2598620 7

[21] H.-K. Kong, Z. Liu, and K. Karahalios. Internal and external visual cue
preferences for visualizations in presentations. In Computer Graphics
Forum, vol. 36, pp. 515–525. Wiley Online Library, 2017. Issue: 3. doi:
10.1111/cgf.13207 3

[22] J. B. Kruskal and J. M. Landwehr. Icicle plots: Better displays for hi-
erarchical clustering. The American Statistician, 37(2):162–168, 1983.
Publisher: Taylor & Francis. 6

[23] J. Lehni and J. Puckey. Paper.js: The Swiss Army Knife of Vector Graphics
Scripting. 7

[24] Z. Liu, C. Chen, F. Morales, and Y. Zhao. Atlas: Grammar-based Pro-
cedural Generation of Data Visualizations. In 2021 IEEE Visualization
Conference (VIS), 2021. doi: 10.1109/VIS49827.2021.9623315 7

[25] Z. Liu, S. B. Navathe, and J. T. Stasko. Network-based visual analysis
of tabular data. In 2011 IEEE Conference on Visual Analytics Science
and Technology (VAST), pp. 41–50, Oct. 2011. doi: 10.1109/VAST.2011.
6102440 9

[26] Z. Liu, S. B. Navathe, and J. T. Stasko. Ploceus: Modeling, visualiz-
ing, and analyzing tabular data as networks. Information Visualization,
13(1):59–89, Jan. 2014. Publisher: SAGE Publications. doi: 10.1177/
1473871613488591 9

[27] Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg,
B. Kerr, and J. Stasko. Data Illustrator: Augmenting vector design tools
with lazy data binding for expressive visualization authoring. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing
Systems, pp. 1–13, 2018. doi: 10.1145/3173574.3173697 7, 8

[28] P. Louridas. Design as bricolage: anthropology meets design thinking.
Design Studies, 20(6):517–535, 1999. Publisher: Elsevier. 9

[29] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and
J. Heer. Formalizing visualization design knowledge as constraints: Ac-
tionable and extensible models in Draco. IEEE Transactions on Visualiza-
tion and Computer Graphics, 25(1):438–448, 2018. Publisher: IEEE. doi:
10.1109/TVCG.2018.2865240 9

[30] T. Munzner. Visualization analysis and design. CRC press, 2014. 2
[31] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool. Procedural

modeling of buildings. In ACM SIGGRAPH 2006 Papers, SIGGRAPH
’06, pp. 614–623. Association for Computing Machinery, Boston, Mas-
sachusetts, July 2006. doi: 10.1145/1179352.1141931 4

[32] D. Park, S. M. Drucker, R. Fernandez, and N. Elmqvist. Atom: A Gram-
mar for Unit Visualizations. IEEE Transactions on Visualization and
Computer Graphics, 24(12):3032–3043, Dec. 2018. Conference Name:
IEEE Transactions on Visualization and Computer Graphics. doi: 10.
1109/TVCG.2017.2785807 4

[33] J. Poco and J. Heer. Reverse-Engineering Visualizations: Recovering Vi-
sual Encodings from Chart Images. Computer Graphics Forum, 36(3):353–
363, 2017. doi: 10.1111/cgf.13193 7, 9

[34] J. Poco, A. Mayhua, and J. Heer. Extracting and Retargeting Color
Mappings from Bitmap Images of Visualizations. IEEE Transactions on
Visualization and Computer Graphics, 24(1):637–646, Jan. 2018. Confer-
ence Name: IEEE Transactions on Visualization and Computer Graphics.
doi: 10.1109/TVCG.2017.2744320 7

[35] J. Pollock, C. Mei, G. Huang, D. Jackson, and A. Satyanarayan. Blue-
fish: A Relational Framework for Graphic Representations, Nov. 2023.
arXiv:2307.00146 [cs]. doi: 10.48550/arXiv.2307.00146 8

[36] D. Ren, M. Brehmer, B. Lee, T. Höllerer, and E. K. Choe. ChartAc-
cent: Annotation for data-driven storytelling. In 2017 IEEE Pacific Vi-
sualization Symposium (PacificVis), pp. 230–239. Ieee, 2017. doi: 10.
1109/PACIFICVIS.2017.8031599 1, 3

[37] D. Ren, T. Höllerer, and X. Yuan. iVisDesigner: Expressive interactive
design of information visualizations. IEEE Transactions on Visualization
and Computer Graphics, 20(12):2092–2101, 2014. Publisher: IEEE. doi:
10.1109/TVCG.2014.2346291 7

[38] D. Ren, B. Lee, and M. Brehmer. Charticulator: Interactive construction of
bespoke chart layouts. IEEE Transactions on Visualization and Computer
Graphics, 25(1):789–799, 2018. Publisher: IEEE. doi: 10.1109/TVCG.
2018.2865158 7, 8, 9

[39] N. B. Robbins. Introduction to Cycle Plots. Visual Business Intelligence
Newsletter, 2008. 7

[40] A. Satyanarayan and J. Heer. Lyra: An Interactive Visualization Design
Environment. Computer Graphics Forum, 33(3):351–360, 2014. doi: 10.
1111/cgf.12391 7, 9

[41] A. Satyanarayan, B. Lee, D. Ren, J. Heer, J. Stasko, J. Thompson,
M. Brehmer, and Z. Liu. Critical reflections on visualization author-
ing systems. IEEE Transactions on Visualization and Computer Graph-

https://doi.org/10.1109/TVCG.2010.159
https://doi.org/10.1109/TVCG.2016.2598609
https://doi.org/10.1109/TVCG.2016.2598609
https://doi.org/10.1109/TVCG.2009.174
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2023.3327354
https://doi.org/10.1109/TVCG.2023.3327354
https://doi.org/10.1111/cgf.14855
https://doi.org/10.1109/TVCG.2019.2934810
https://doi.org/10.1109/TVCG.2021.3114856
https://doi.org/10.1145/3411764.3445452
https://doi.org/10.1111/cgf.14005
https://doi.org/10.1145/1142473.1142560
https://doi.org/10.1145/2642918.2647411
https://doi.org/10.1145/2642918.2647411
https://doi.org/10.1109/TVCG.2017.2659744
https://doi.org/10.1109/TVCG.2017.2659744
https://doi.org/10.1109/PacificVis.2012.6183556
https://doi.org/10.1109/TVCG.2016.2598620
https://doi.org/10.1109/TVCG.2016.2598620
https://doi.org/10.1111/cgf.13207
https://doi.org/10.1111/cgf.13207
https://doi.org/10.1109/VIS49827.2021.9623315
https://doi.org/10.1109/VAST.2011.6102440
https://doi.org/10.1109/VAST.2011.6102440
https://doi.org/10.1177/1473871613488591
https://doi.org/10.1177/1473871613488591
https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1145/1179352.1141931
https://doi.org/10.1109/TVCG.2017.2785807
https://doi.org/10.1109/TVCG.2017.2785807
https://doi.org/10.1111/cgf.13193
https://doi.org/10.1109/TVCG.2017.2744320
https://doi.org/10.48550/arXiv.2307.00146
https://doi.org/10.1109/PACIFICVIS.2017.8031599
https://doi.org/10.1109/PACIFICVIS.2017.8031599
https://doi.org/10.1109/TVCG.2014.2346291
https://doi.org/10.1109/TVCG.2014.2346291
https://doi.org/10.1109/TVCG.2018.2865158
https://doi.org/10.1109/TVCG.2018.2865158
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1111/cgf.12391

ics, 26(1):461–471, 2019. Publisher: IEEE. doi: 10.1109/TVCG.2019.
2934281 8

[42] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite:
A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350, 2016. Publisher: IEEE. doi: 10.
1109/TVCG.2016.2599030 1, 7, 8

[43] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive Vega: A
Streaming Dataflow Architecture for Declarative Interactive Visualization.
IEEE Transactions on Visualization and Computer Graphics, 22(1):659–
668, Jan. 2016. Conference Name: IEEE Transactions on Visualization
and Computer Graphics. doi: 10.1109/TVCG.2015.2467091 8

[44] L. S. Snyder and J. Heer. DIVI: Dynamically Interactive Visualization.
IEEE Transactions on Visualization and Computer Graphics, 30(1):403 –
413, 2024. Publisher: IEEE. doi: 10.1109/TVCG.2023.3327172 1, 7

[45] J. Stasko and E. Zhang. Focus+ context display and navigation techniques
for enhancing radial, space-filling hierarchy visualizations. In IEEE Sym-
posium on Information Visualization 2000. INFOVIS 2000. Proceedings,
pp. 57–65. IEEE, 2000. doi: 10.1109/INFVIS.2000.885091 6

[46] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, anal-
ysis, and visualization of multidimensional relational databases. IEEE
Transactions on Visualization and Computer Graphics, 8(1):52–65, 2002.
Publisher: IEEE. doi: 10.1109/INFVIS.2000.885086 9

[47] J. R. Thompson, Z. Liu, and J. Stasko. Data Animator: Authoring Expres-
sive Animated Data Graphics. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, CHI ’21, pp. 1–18. Association
for Computing Machinery, New York, NY, USA, May 2021. doi: 10.
1145/3411764.3445747 7

[48] T. Tsandilas. StructGraphics: Flexible Visualization Design through
Data-Agnostic and Reusable Graphical Structures. IEEE Transactions on
Visualization and Computer Graphics, 2020. Publisher: IEEE. doi: 10.
1109/TVCG.2020.3030476 7

[49] B. Vander Zanden, R. Halterman, B. Myers, R. McDaniel, R. Miller,
P. Szekely, D. Giuse, and D. Kosbie. Lessons learned about one-way,
dataflow constraints in the Garnet and Amulet graphical toolkits. ACM
Transactions on Programming Languages and Systems (TOPLAS), 23:776–
796, Nov. 2001. doi: 10.1145/506315.506318 9

[50] Y. Wang, Y. Gao, R. Huang, W. Cui, H. Zhang, and D. Zhang. Animated
Presentation of Static Infographics with InfoMotion. Computer Graphics
Forum, 40(3):507–518, June 2021. doi: 10.1111/cgf.14325 1, 7, 8

[51] H. Wickham. ggplot2: Elegant graphics for data analysis. Springer, 2009.
1, 8

[52] L. Wilkinson. The Grammar of Graphics. Springer, New York, 2nd edition
ed., July 2005. 8, 9

[53] J. Zhao, Z. Liu, M. Dontcheva, A. Hertzmann, and A. Wilson. MatrixWave:
Visual Comparison of Event Sequence Data. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, 2015.
doi: 10.1145/2702123.2702419 4

[54] J. Zong, D. Barnwal, R. Neogy, and A. Satyanarayan. Lyra 2: Designing
interactive visualizations by demonstration. IEEE Transactions on Visual-
ization and Computer Graphics, 27(2):304–314, 2020. Publisher: IEEE.
doi: 10.1109/TVCG.2020.3030367 7

https://doi.org/10.1109/TVCG.2019.2934281
https://doi.org/10.1109/TVCG.2019.2934281
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2023.3327172
https://doi.org/10.1109/INFVIS.2000.885091
https://doi.org/10.1109/INFVIS.2000.885086
https://doi.org/10.1145/3411764.3445747
https://doi.org/10.1145/3411764.3445747
https://doi.org/10.1109/TVCG.2020.3030476
https://doi.org/10.1109/TVCG.2020.3030476
https://doi.org/10.1145/506315.506318
https://doi.org/10.1111/cgf.14325
https://doi.org/10.1145/2702123.2702419
https://doi.org/10.1109/TVCG.2020.3030367

	Introduction
	Manipulable Semantic Components in a Diverging Stacked Bar Chart: An Example
	Object Model: Semantic Components
	Primary Visual Elements: Marks, Vertices & Segments
	Data Scope
	Primary Visual Elements: Groups
	Auxiliary Visual Elements
	Visual Encodings and Scales
	Algorithmic Layouts
	Relational Constraints
	View Configuration
	Alternative Scene Descriptions

	Procedure: Generative & Modificative Operations
	Generative Operations: Initialize Data and Elements
	Generative Operations: Join Visual Elements with Data
	Modificative Operations: Specify Channel Values
	Modificative Operations: Apply Layouts & Constraints
	Modificative Operations: Configure View
	Chaining Operations

	Implementation: Mascot.js
	Applications
	Interactive Chart Authoring
	Chart Deconstruction and Reuse
	Animating Static Visualizations

	Comparison with Related Frameworks
	Component and Operation Abstractions
	Data-Driven Documents (D3)
	Declarative Specifications
	Algebraic Frameworks

	Conclusion and Future Work

