
WHATSNEXT: Guidance-enriched Exploratory Data
Analysis with Interactive, Low-Code Notebooks

Chen Chen∗, Jane Hoffswell†, Shunan Guo‡, Ryan Rossi‡, Yeuk-Yin Chan‡, Fan Du‡, Eunyee Koh‡, Zhicheng Liu∗
∗University of Maryland, College Park, MD, USA

†Adobe Research, Seattle, WA, USA ‡Adobe Research, San Jose, CA, USA
∗{cchen24, leozcliu}@umd.edu, †‡{jhoffs, sguo, ryrossi, ychan, fdu, eunyee}@adobe.com

Abstract—Computational notebooks such as Jupyter are popu-
lar for exploratory data analysis and insight finding. Despite the
module-based structure, notebooks visually appear as a single
thread of interleaved cells containing text, code, visualizations, and
tables, which can be unorganized and obscure users’ data analysis
workflow. Furthermore, users with limited coding expertise may
struggle to quickly engage in the analysis process. In this work,
we design and implement an interactive notebook framework,
WHATSNEXT, with the goal of supporting low-code visual data
exploration with insight-based user guidance. In particular, we
(1) re-design a standard notebook cell to include a recommendation
panel that suggests possible next-step exploration questions or
analysis actions to take, and (2) create an interactive, dynamic
tree visualization that reflects the analytic dependencies between
notebook cells to make it easy for users to see the structure of
the data exploration threads and trace back to previous steps.

Index Terms—Visual analytics; Interactive systems and tools

I. INTRODUCTION

Computational notebooks, such as Jupyter Notebook [1] and
RStudio [2], are the most popular tools for exploratory data
analysis (EDA) among data scientists [3], [4]. Computational
notebooks have several advantages: (1) users can combine
code, text, visualizations, and tables in one environment [4],
[5], (2) users can easily change the code to see the intermediate
results and debug the behavior, and (3) users can leverage the
notebook framework to deploy and share notebooks with the
cloud, thereby facilitating collaboration between developers [6].

However, computational notebooks’ code-reliance limits their
use by inexperienced programmers like sales managers and doc-
tors [7] who cannot code (or do not have time to code), despite
their need for tooling that can support predictive or prescriptive
analysis. These users often collaborate with programmers to
obtain the desired results, which inevitably delays decision-
making. Although Observable [8] aims to alleviate the need
for extensive programming expertise by providing APIs and
templates for quickly rendering data in a notebook environment,
users are still expected to have basic programming knowledge
or learn on the fly. To make this form of analysis more
accessible to users with varying expertise, one option is to
explore a less code-dependent notebook environment; however,
no-code or low-code interaction remains under-explored.

Notebooks also have some navigational challenges [5], [9].
A basic notebook collects cells containing code, text, tables, and
visualizations into a single, interleaved thread, which may not
accurately capture the user’s analysis flow or the complex

The work was done when Chen Chen∗ was an intern at Adobe Research.

hierarchy of branching analysis threads. For example, from a
single bar chart, the user may want to explore different grouped
bar charts by introducing categorical attributes (one at a time),
represented as several consecutive new notebook cells. This
linear structure cannot clearly reflect the hierarchical relation-
ship between these new cells and the source visualization. The
user also cannot easily restore deleted cells or recall how the
removed cell contributes to the analysis hierarchy, thus creating
barriers to understanding the provenance of steps during data
analysis [10]–[12]. This navigation issue is one of the major
disadvantages of using notebooks for data exploration.

To address these challenges, we introduce WHATSNEXT, an
interactive notebook environment for low-code data exploration
that (1) recommends insight-related follow-up questions to
interactively generate new visualizations, and (2) visualizes the
analysis hierarchy to help users trace the history of diverging
analysis threads. WHATSNEXT augments a standard notebook
cell with a no-code interaction panel showing recommended
follow-up analysis questions based on the current visualization.
WHATSNEXT also provides a dynamic tree visualization that
shows the analytic dependencies between cells; users can thus
examine the overall notebook structure, view the cell-node cor-
respondence, open the recommendation panel of a specific cell,
and restore deleted cells from the analysis thread visualization.

In summary, we contribute the design of WHATSNEXT, a
novel interactive notebook framework for guidance-enriched
visual data analysis, and a next-step recommendation heuristic
for efficiently exploring insights from the current visualization.

II. RELATED WORK

This work combines research on computational notebooks
and visualization recommendation for exploratory data analysis.

A. Interactions in Computational Notebook Environments

Given their code-reliance, computational notebooks are often
used for collaborative programming [13], [14]. Recent work
has developed helper functions or built-in widgets to facilitate
the overall user experience, for example, by including semantic
code search in notebook collections [15] and interactive visual
exploration of search results [4], enabling efficient exploration
of the cells’ history [16]–[19] or providing version control [20],
supporting quick decision-point navigation [21], and detecting
and resolving staleness issues [12]. To facilitate code editing,
Kery et al. [22], [23] proposed the concept of fluidly moving
between code and GUI editing; for example, when a user

1

6
5

2

2

3

4

4
3

1

2

4 3

6 5

Analysis Thread

C

E

B

D

5

6

A

Fig. 1: The interface and sample use case of WHATSNEXT. The core UI features are a new, no-code interaction panel that
recommends follow-up questions A and the analysis thread visualization of the exploration structure B ; the user can quickly
generate new notebook cells 2-6 by selecting recommended follow-up questions 2-6 . Other simple interactions allow the user
to explore, delete, and restore cells from the analysis history C-E . The sample cars dataset is available at https://goo.gl/9G1egz.

repositions a table column in the output of a Jupyter notebook
cell, the code will automatically update to reflect the new sort
order. This work has also inspired research into several more in-
teractive notebook-based prototypes, e.g., Unravel [24] enables
structured edits via drag-and-drop and toggle interactions, and
Symphony [25] promotes shareable, task-specific data-driven
components in Jupyter for ML practitioners. These works aim
to improve the usability of notebook environments. However,
they still maintain some code-reliance and do not fully explore
how to enable a low-code mode for notebooks.

B. Visualization Recommendation for EDA

Presenting visualization recommendations can help users
with data exploration and analysis [26]. To better reflect user
intents, many systems leverage user interactions or user inputs
to refine the recommendations. For example, Voyager [27] and
Voyager 2 [28] leverage user-specified fields and wildcards to it-
erate on possible data attributes, transformations, and encodings
to explore for the final visualization recommendations. VizAs-
sist [29] recommends relevant visualizations based on user-
specified analysis objectives (e.g., to discover outliers or to find
correlations). Lux [30] was built on Jupyter to provide real-time
visualization recommendations of patterns, trends, and analysis
directions with optimized computational overheads whenever
the user prints a dataframe in their notebooks. Li et al. [31]
developed a system that recommends similar visualizations by
extracting the structural information from a user-provided SVG
image with GNN-based contrastive learning [32].

With the advances in the NLP field, many systems have
introduced natural language interfaces (NLI) for visual analysis
and recommendation. These systems can extract a user’s ana-
lytical intents by identifying explicit data attributes, numerical
values, and chart types in input queries, and facilitate effective
conversations with the user by modeling ambiguity properly.
DataTone [33] offers interactive ambiguity widgets to let users
correct system decisions. Eviza [34] supports language pragmat-

ics in analytical interaction to enable conversations between a
user and their data that allow follow-up queries. FlowSense [35]
uses semantic parsing and special utterances to understand the
dataflow context from plain English, facilitating the creation
of multi-view linked visualizations. Snowy [36] generates
utterance recommendations to guide conversational visual
analysis based on data interestingness and language pragmatics.

III. WHATSNEXT: GUIDANCE FOR EDA IN NOTEBOOKS

WHATSNEXT explores new forms of guidance for compu-
tational notebook environments to boost the user’s awareness
when performing exploratory data analysis (EDA) in a low-code
manner. To this end, we identified four key design goals.

DG1: Low-code. Reduce the difficulty of data exploration [37]
to support users with varying levels of programming expertise.

DG2: Insight-driven. Help users better locate relevant infor-
mation quickly and synthesize compound data insights [38].

DG3: History. Help users recall explored content and navigate
efficiently by providing visual cues and simple interactions [39].

DG4: Structure. Reveal the analytic dependencies between
cells to make users aware of the overall exploration status [19].

A. Interface and Pipeline

Figure 1 illustrates a typical use case of WHATSNEXT. To
simplify exploratory data analysis, the new, no-code interaction
panel (Fig. 1 A) recommends follow-up questions or actions.
Starting from a source visualization (Fig. 1 1), the user selects
the first recommended follow-up question (Fig. 1 2) to automat-
ically generate the next step in the analysis process (Fig. 1 2).
This new cell contains possible explanations for the selected
question, which the user can select (Fig. 1 3-4) to generate new
visualizations (Fig. 1 3-4). To accurately capture the branching
and hierarchical nature of the analysis process, WHATSNEXT
provides an analysis thread visualization (Fig. 1 B) to show
the overall exploration structure (nodes are annotated with the

https://goo.gl/9G1egz

Render visualization

Synthesize Vega-Lite spec

Assign unique ID

Cell Rendering

Search for logically-

related questions

Generate metadata for each question

Question Retrieval

Search for attribute-

related questions

List questions in the interaction panel

Click on any question

User Interaction

Fetch metadata of all cells Generate data of the required format Render tree widget

Analysis Thread Visualization Update Automated

Human Input

New Cell’s

Metadata

Current insight JSON object

Fig. 2: The architectural pipeline of WHATSNEXT. With a new notebook cell’s metadata, WHATSNEXT renders the corresponding
visualizations(s) (Cell Rendering), searches for both logically-related and attribute-related insights, turns them into questions,
and populates these questions in the interaction panel (Question Retrieval). The Analysis Thread Visualization Update happens in
real-time. Click events on the questions from the user (User Interaction) further create new cells, making the process iterative.

corresponding cell numbers for clarity in the paper). Tooltips on
the analysis thread visualization allow the user to preview the
visualizations in the corresponding cell (Fig.1 C); the user can
jump to any cell by clicking its node. With these interactions,
the user can quickly trace back to Fig. 1 1 and generate two new
cells (Fig. 1 5,6) to explore different breakdowns by year. The
user can delete unwanted cells from the cell menu (Fig. 1 D);
the analysis thread visualization maintains corresponding nodes
in gray (Fig. 1 E) as a history from which to restore old cells.
The architectural pipeline of WHATSNEXT is shown in Fig. 2.

B. The Low-code Design of Notebook Cells

A standard notebook cell consists of two parts: a code editor
containing the corresponding code snippet and the executed
result [1], [2]. To support data exploration in a low-code manner,
we augment the notebook cells in WHATSNEXT to include
an interaction panel with recommendations for new steps in
the analysis process in the form of follow-up questions or
actions (Fig. 1 2-6). Without writing any code, the user can
click on the options presented in the interaction panel, which
inserts new notebook cells accordingly. This interaction allows
users to focus on the analysis process directly, rather than the
intricacies of writing the correct code to meet their needs.

C. Question-driven Data Insight Exploration

WHATSNEXT starts with an initial data insight visualization
and the underlying tabular data (e.g., both of which can be
retrieved from a dashboard), and renders the first notebook cell
embedding the visualization (Fig. 2: Cell Rendering). Meanwhile,
the back-end utilizes algorithms from Voder [40] to generate
a search space of insights for later steps in the pipeline. We
choose Voder as the insight generator mainly due to the JSON
format and useful information provided with the insights, such
as: activeHtml (the insight text), attributes (involved data
attributes), relatedVisObjects (candidate visualizations,
e.g., mark type, encodings, aggregation), tier (the importance
level), and type (the insight type). Voder supports four types
of insights: anomalies, correlation, distribution, and extremum.
Some insights involve value derivation (e.g., computing the
average) and value filtering (e.g., anchoring on a specific value).

WHATSNEXT then retrieves potential follow-up questions
for the visualization (a.k.a., the insight) and displays them in
the interaction panel of the cell (Fig. 2: Question Retrieval).
WHATSNEXT considers two kinds of follow-up questions:
logically-related questions, whose answers are logically con-
nected to the current insight, and attribute-related questions,
whose answer includes insights involving the same attributes
as the current cell. For example, given the insight “Cars from
the year 1980 have the lowest average horsepower” (Fig. 1 1),
WHATSNEXT generates six questions, including both logically-
related questions (e.g., “What might explain the fact that 1980
has the lowest average horsepower?”) and attribute-related
questions (e.g., “Which item has the lowest horsepower?”) as
options for how the user might proceed with their analysis.

Attribute-related questions are straightforward to retrieve:
the system obtains the attribute set for the current cell’s insight,
searches for insights whose attributes overlap, and converts
them into questions. For logically-related questions, the system
needs to determine which insights are logically related to the
current insight; we thus propose retrieval rules based on the
insight type (Table I) to search for logically-related insights to
present as questions. Table I also provides example insights.

Extremum. For an extremum insight involving a categorical
variable c1 and a quantitative variable q1, WHATSNEXT looks
for three kinds of logically-related insights: (1) an extremum
insight involving the same categorical variable c1 and another
quantitative variable q2 plus a correlation insight between these
two quantitative variables [q1, q2], (2) an anomaly insight with
the same variable pair (c1 and q1), and (3) an extremum insight
with an additional categorical variable c2. All three insight types
reveal possible explanations for the current extremum insight.

Correlation. For a correlation insight involving two quantita-
tive variables [q1, q2], the system identifies two correlation in-
sights that involve [q1, q3] and [q2, q3] respectively, to expand
on the current correlation with two additional correlations.

Anomaly. For an anomaly insight, WHATSNEXT looks for a
distribution insight involving the same quantitative variable q1
to further present the value range for the majority of the data.

TABLE I: Rules for logically-related insight retrieval based on the insight type. WHATSNEXT searches for an insight (combination)
that has a logical connection to the given insight to support reasoning and drill-down analysis, and reflect low-level analytic
tasks. Four insight types are considered: [Ext]remum, [Cor]relation, [Ano]maly, and [Dis]tribution.

Given Insight Example Logically-related Insight Example Converted Question

[Ext] “Cars from the year 1980 have
the lowest average Weight”

[Ext] “Cars from the year 1980 have the lowest average Horsepower” +
[Cor] “Horsepower and Weight have a strong correlation”

“Why do cars from the year 1980
have the lowest average Weight?”[Ano] “There are three anomalies regarding Weight in the year 1980”

[Ext] “Cars from Japan in the year 1980 have the lowest average weight”

[Cor] “Horsepower and Weight have a
strong correlation”

[Cor] “Weight and Displacement have a strong correlation” + ______
[Cor] “Horsepower and Displacement have a strong correlation”

“Why do Horsepower and Weight
have a strong correlation?”

[Ano] “The car ‘renault 18i’ appears to
be an outlier regarding Horsepower” [Dis] “Most values for Horsepower are in the range [75.0, 125.0]” “What is the major value range of

Horsepower?”

[Dis] “Most values for Horsepower are
in the range [75.0, 125.0]”

[Ano] “The car ‘renault 18i’ seems an outlier regarding Horsepower” “What are potential outliers regard-
ing Horsepower?”

[Dis] “Most values for Horsepower in 1980 are in the range [70.0, 120.0]” “What is the distribution of Horse-
power in the year 1980?”

Distribution. For a distribution insight, the system looks for
(1) an anomaly with the same quantitative variable to show
potential outliers, and (2) a distribution insight with an extra
categorical variable to reveal drill-down distribution statistics.

The above rules were developed based on three design goals:
(1) support potential reasoning about a data insight, (2) enable
drill-down analysis by introducing new attributes, and (3) reflect
low-level analytic tasks (e.g., Find Anomalies or Correlate [41]).
Note that these rules do not require insights to come from
Voder [40]; insights simply need to be formatted accordingly.

After the search process, WHATSNEXT uses a simple but
effective template-based method [42] to generate questions
from the selected insights. Typically there are multiple ques-
tions (generated from multiple insights) to display to the user.
Thus, WHATSNEXT must order the recommended insights
appropriately; the interaction panel ordering follows two prin-
ciples: (1) logically-related questions have higher priority than
attribute-related questions, and (2) attribute-related questions
are ordered according to the importance level from Voder [40].

When the user selects a question that has multiple possible
answers, WHATSNEXT will present the text of each insight
combination in the interaction panel as a possible action to
take (Fig. 1 3,4), which functions similarly to a question.

D. The Analysis Thread Visualization

The analysis thread visualization is updated in real-time to
show the structure of the EDA process when notebook cells are
added or deleted (Fig. 2: Analysis Thread Visualization Update).
When deleting a cell that the user deems unnecessary (Fig. 1 D),
the analysis thread visualization will grey out the corresponding
node to indicate its archival status (Fig. 1 E) and maintain its
child nodes, if any. The user can restore deleted cells by simply
clicking its corresponding node and selecting “restore this cell”.
Two additional node interactions are included to support user
navigation: (1) hover shows a mini version of the visualization
in the corresponding cell as a tooltip, and (2) click jumps the
user directly to the corresponding cell in the notebook. The
analysis thread visualization captures the analytic dependencies

between notebook cells that would otherwise be hidden or lost
in a linear notebook; this view can thus act as a more complete
archive of the user’s overall EDA process for quick review.

IV. DISCUSSION, LIMITATIONS, AND FUTURE WORK

We discuss the system limitations and three areas for future
work to enhance the practical quality of WHATSNEXT.

(1) Improve connections between the notebook and analysis
structure. The analysis thread visualization shows the hidden
analytic dependencies between the linearly-ordered cells in the
notebook; however, these connections can be further enhanced
to reveal other hidden features (e.g., adding attribute or insight-
type tags on recommendations or color-encoding nodes to show
the recommendation type or unexplored EDA directions).

(2) Support user-customized EDA trajectories. WHATSNEXT
recommends a variety of analysis directions, but these currently
cannot be further customized by the user. For example, users
might want to specify their analysis intent explicitly or refine
the follow-up questions. Future work should determine how
best to support these goals while maintaining ecological syn-
chronization between the cells and analysis thread visualization.

(3) Support thread decomposition, switching, and saving.
WHATSNEXT currently supports multi-thread analysis within a
single notebook. While the analysis thread visualization can
show the overall analysis structure, (1) the tree may get too large
to effectively support navigation, and (2) the user may want to
decompose their exploration into disjoint threads. Future work
could allow users to easily switch amongst analysis sub-threads
to reduce the mental difficulty when tracing complex analysis
histories. WHATSNEXT could also allow users to generate and
export data insight reports to share their analysis results.

V. CONCLUSION

WHATSNEXT contributes an interactive notebook framework
for low-code visual exploratory data analysis that recommends
next-step analysis questions based on the visualization attributes
and insights. To support navigation, WHATSNEXT visualizes
the analytic dependencies of diverging analysis trajectories.

REFERENCES

[1] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, P. Ivanov,
D. Avila, S. Abdalla, C. Willing, and J. D. Team, “Jupyter Notebooks
- a publishing format for reproducible computational workflows,” in
International Conference on Electronic Publishing, 2016, https://doi.org/
10.3233/978-1-61499-649-1-87.

[2] J. S. Racine, “RStudio: A Platform-Independent IDE for R and Sweave,”
Journal of Applied Econometrics, vol. 27, no. 1, pp. 167–172, 2012,
https://doi.org/10.1002/jae.1278.

[3] S. Lau, I. Drosos, J. M. Markel, and P. J. Guo, “The Design Space of
Computational Notebooks: An Analysis of 60 Systems in Academia and
Industry,” in 2020 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), 2020, pp. 1–11, https://doi.org/10.1109/
VL/HCC50065.2020.9127201.

[4] X. Li, Y. Zhang, J. Leung, C. Sun, and J. Zhao, “EDAssistant: Supporting
Exploratory Data Analysis in Computational Notebooks with In Situ
Code Search and Recommendation,” ACM Transactions on Interactive
Intelligent Systems, vol. 13, no. 1, 2023, https://doi.org/10.1145/3545995.

[5] J. Wenskovitch, J. Zhao, S. Carter, M. Cooper, and C. North, “Albireo:
An Interactive Tool for Visually Summarizing Computational Notebook
Structure,” in 2019 IEEE Visualization in Data Science (VDS), 2019, pp.
1–10, https://doi.org/10.1109/VDS48975.2019.8973385.

[6] M. Araya, M. Osorio, M. Díaz, C. Ponce, M. Villanueva, C. Valenzuela,
and M. Solar, “JOVIAL: Notebook-based astronomical data analysis
in the cloud,” Astronomy and Computing, vol. 25, pp. 110–117, 2018,
https://doi.org/10.1016/j.ascom.2018.09.001.

[7] T. Murallie, “Welcome to the Age of Citizen Data
Scientists.” Nov 2021, https://towardsdatascience.com/
how-to-become-a-citizen-data-scientist-294660da0494.

[8] Observable, “Explore, analyze, and explain data as a team.” May 2022,
https://observablehq.com/.

[9] P. J. Guo and M. I. Seltzer, “BURRITO: Wrapping Your Lab Notebook
in Computational Infrastructure,” in Proceedings of the 4th USENIX
Conference on Theory and Practice of Provenance, 2012, https://www.
usenix.org/conference/tapp12/workshop-program/presentation/Guo.

[10] E. D. Ragan, A. Endert, J. Sanyal, and J. Chen, “Characterizing
Provenance in Visualization and Data Analysis: An Organizational
Framework of Provenance Types and Purposes,” IEEE Transactions
on Visualization and Computer Graphics, vol. 22, no. 1, pp. 31–40, 2016,
https://doi.org/10.1109/TVCG.2015.2467551.

[11] A. Head, F. Hohman, T. Barik, S. M. Drucker, and R. DeLine, “Managing
Messes in Computational Notebooks,” in Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, 2019, p. 1–12,
https://doi.org/10.1145/3290605.3300500.

[12] S. Macke, H. Gong, D. J.-L. Lee, A. Head, D. Xin, and A. Parameswaran,
“Fine-Grained Lineage for Safer Notebook Interactions,” Proceedings
of the VLDB Endowment, vol. 14, no. 6, p. 1093–1101, 2021, https:
//doi.org/10.14778/3447689.3447712.

[13] A. Y. Wang, A. Mittal, C. Brooks, and S. Oney, “How Data Scientists Use
Computational Notebooks for Real-Time Collaboration,” Proceedings
of the ACM on Human-Computer Interaction, vol. 3, no. CSCW, 2019,
https://doi.org/10.1145/3359141.

[14] K. M. Mendez, L. Pritchard, S. N. Reinke, and D. I. Broadhurst, “Toward
collaborative open data science in metabolomics using jupyter notebooks
and cloud computing,” Metabolomics, vol. 15, pp. 1–16, 2019, https:
//doi.org/10.1007/s11306-019-1588-0.

[15] X. Li, Y. Wang, H. Wang, Y. Wang, and J. Zhao, “NBSearch: Semantic
Search and Visual Exploration of Computational Notebooks,” in Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, 2021, https://doi.org/10.1145/3411764.3445048.

[16] M. B. Kery, A. Horvath, and B. Myers, “Variolite: Supporting Exploratory
Programming by Data Scientists,” in Proceedings of the 2017 CHI Con-
ference on Human Factors in Computing Systems, 2017, p. 1265–1276,
https://doi.org/10.1145/3025453.3025626.

[17] M. B. Kery, B. E. John, P. O’Flaherty, A. Horvath, and B. A. Myers,
“Towards Effective Foraging by Data Scientists to Find Past Analysis
Choices,” in Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems, 2019, p. 1–13, https://doi.org/10.1145/3290605.
3300322.

[18] M. V. Merino, L. Thomas van Binsbergen, and M. Seraj, “Making the
Invisible Visible in Computational Notebooks,” in 2022 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), 2022,
pp. 1–3, https://doi.org/10.1109/VL/HCC53370.2022.9833148.

[19] Z. J. Wang, K. Dai, and W. K. Edwards, “Stickyland: Breaking the
Linear Presentation of Computational Notebooks,” in Extended Abstracts
of the 2022 CHI Conference on Human Factors in Computing Systems,
2022, https://doi.org/10.1145/3491101.3519653.

[20] M. B. Kery and B. A. Myers, “Interactions for Untangling Messy History
in a Computational Notebook,” in 2018 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2018, pp. 147–
155, https://doi.org/10.1109/VLHCC.2018.8506576.

[21] N. Weinman, S. M. Drucker, T. Barik, and R. DeLine, “Fork It: Supporting
Stateful Alternatives in Computational Notebooks,” in Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems,
2021, https://doi.org/10.1145/3411764.3445527.

[22] M. B. Kery, D. Ren, F. Hohman, D. Moritz, K. Wongsuphasawat, and
K. Patel, “mage: Fluid Moves Between Code and Graphical Work in
Computational Notebooks,” in Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology, 2020, p. 140–151,
https://doi.org/10.1145/3379337.3415842.

[23] M. B. Kery, D. Ren, K. Wongsuphasawat, F. Hohman, and K. Patel,
“The Future of Notebook Programming Is Fluid,” in Extended Abstracts
of the 2020 CHI Conference on Human Factors in Computing Systems,
2020, p. 1–8, https://doi.org/10.1145/3334480.3383085.

[24] N. Shrestha, T. Barik, and C. Parnin, “Unravel: A Fluent Code Explorer
for Data Wrangling,” in The 34th Annual ACM Symposium on User
Interface Software and Technology, 2021, p. 198–207, https://doi.org/10.
1145/3472749.3474744.

[25] A. Bäuerle, A. A. Cabrera, F. Hohman, M. Maher, D. Koski, X. Suau,
T. Barik, and D. Moritz, “Symphony: Composing Interactive Interfaces
for Machine Learning,” in Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems, 2022, https://doi.org/10.1145/
3491102.3502102.

[26] L. Grammel, M. Tory, and M.-A. Storey, “How information visualization
novices construct visualizations,” IEEE Transactions on Visualization
and Computer Graphics, vol. 16, no. 6, pp. 943–952, 2010, https://doi.
org/10.1109/TVCG.2010.164.

[27] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe,
and J. Heer, “Voyager: Exploratory Analysis via Faceted Browsing of
Visualization Recommendations,” IEEE Transactions on Visualization
and Computer Graphics, vol. 22, no. 1, pp. 649–658, 2016, https:doi.
org/10.1109/TVCG.2015.2467191.

[28] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. Mackinlay, B. Howe, and J. Heer, “Voyager 2: Augmenting visual
analysis with partial view specifications,” in Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, 2017, p.
2648–2659, https://doi.org/10.1145/3025453.3025768.

[29] F. Bouali, A. E. tahir Guettala, and G. Venturini, “VizAssist: an interactive
user assistant for visual data mining,” The Visual Computer, vol. 32, pp.
1447–1463, 2016, https://doi.org/10.1007/s00371-015-1132-9.

[30] D. J.-L. Lee, D. Tang, K. Agarwal, T. Boonmark, C. Chen, J. Kang,
U. Mukhopadhyay, J. Song, M. Yong, M. A. Hearst, and A. G.
Parameswaran, “Lux: always-on visualization recommendations for
exploratory dataframe workflows,” Proceedings of the VLDB Endowment,
vol. 15, no. 3, p. 727–738, 2021, https://doi.org/10.14778/3494124.
3494151.

[31] H. Li, Y. Wang, A. Wu, H. Wei, and H. Qu, “Structure-aware Visualization
Retrieval,” in CHI Conference on Human Factors in Computing Systems,
2022, pp. 1–14, https://doi.org/10.1145/3491102.3502048.

[32] F.-Y. Sun, J. Hoffman, V. Verma, and J. Tang, “InfoGraph: Unsupervised
and Semi-supervised Graph-Level Representation Learning via Mutual
Information Maximization,” in International Conference on Learning
Representations, 2020, https://openreview.net/forum?id=r1lfF2NYvH.

[33] T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G. Karahalios,
“Datatone: Managing Ambiguity in Natural Language Interfaces for
Data Visualization,” in Proceedings of the 28th Annual ACM Sym-
posium on User Interface Software & Technology, 2015, p. 489–500,
https://doi.org/10.1145/2807442.2807478.

[34] V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X. Chang,
“Eviza: A Natural Language Interface for Visual Analysis,” in Proceed-
ings of the 29th Annual Symposium on User Interface Software and
Technology, 2016, p. 365–377, https://doi.org/10.1145/2984511.2984588.

[35] B. Yu and C. T. Silva, “Flowsense: A Natural Language Interface for
Visual Data Exploration within a Dataflow System,” IEEE Transactions
on Visualization and Computer Graphics, vol. 26, no. 1, pp. 1–11, 2020,
https://doi.org/10.1109/TVCG.2019.2934668.

https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1002/jae.1278
https://doi.org/10.1109/VL/HCC50065.2020.9127201
https://doi.org/10.1109/VL/HCC50065.2020.9127201
https://doi.org/10.1145/3545995
https://doi.org/10.1109/VDS48975.2019.8973385
https://doi.org/10.1016/j.ascom.2018.09.001
https://towardsdatascience.com/how-to-become-a-citizen-data-scientist-294660da0494
https://towardsdatascience.com/how-to-become-a-citizen-data-scientist-294660da0494
https://observablehq.com/
https://www.usenix.org/conference/tapp12/workshop-program/presentation/Guo
https://www.usenix.org/conference/tapp12/workshop-program/presentation/Guo
https://doi.org/10.1109/TVCG.2015.2467551
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.14778/3447689.3447712
https://doi.org/10.14778/3447689.3447712
https://doi.org/10.1145/3359141
https://doi.org/10.1007/s11306-019-1588-0
https://doi.org/10.1007/s11306-019-1588-0
https://doi.org/10.1145/3411764.3445048
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1145/3290605.3300322
https://doi.org/10.1145/3290605.3300322
https://doi.org/10.1109/VL/HCC53370.2022.9833148
https://doi.org/10.1145/3491101.3519653
https://doi.org/10.1109/VLHCC.2018.8506576
https://doi.org/10.1145/3411764.3445527
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/3334480.3383085
https://doi.org/10.1145/3472749.3474744
https://doi.org/10.1145/3472749.3474744
https://doi.org/10.1145/3491102.3502102
https://doi.org/10.1145/3491102.3502102
https://doi.org/10.1109/TVCG.2010.164
https://doi.org/10.1109/TVCG.2010.164
https:doi.org/10.1109/TVCG.2015.2467191
https:doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1007/s00371-015-1132-9
https://doi.org/10.14778/3494124.3494151
https://doi.org/10.14778/3494124.3494151
https://doi.org/10.1145/3491102.3502048
https://openreview.net/forum?id=r1lfF2NYvH
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.1145/2984511.2984588
https://doi.org/10.1109/TVCG.2019.2934668

[36] A. Srinivasan and V. Setlur, “Snowy: Recommending Utterances for
Conversational Visual Analysis,” in The 34th Annual ACM Symposium
on User Interface Software and Technology, 2021, p. 864–880, https:
//doi.org/10.1145/3472749.3474792.

[37] M. Beth Kery and B. A. Myers, “Exploring exploratory programming,”
in 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), 2017, pp. 25–29, https://doi.org/10.1109/VLHCC.
2017.8103446.

[38] P. Law, A. Endert, and J. Stasko, “Characterizing Automated Data
Insights,” in 2020 IEEE Visualization Conference (VIS), 2020, pp. 171–
175, https://doi.org/10.1109/VIS47514.2020.00041.

[39] A. Rule, A. Tabard, and J. D. Hollan, “Exploration and explanation in
computational notebooks,” in Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, 2018, p. 1–12, https://doi.org/
10.1145/3173574.3173606.

[40] A. Srinivasan, S. M. Drucker, A. Endert, and J. Stasko, “Augmenting
Visualizations with Interactive Data Facts to Facilitate Interpretation and
Communication,” IEEE Transactions on Visualization and Computer
Graphics, vol. 25, no. 1, pp. 672–681, 2019, https://doi.org/10.1109/
TVCG.2018.2865145.

[41] R. Amar, J. Eagan, and J. Stasko, “Low-Level Components of Analytic
Activity in Information Visualization,” in Proceedings of the Proceedings
of the 2005 IEEE Symposium on Information Visualization, 2005, https:
//doi.org/10.1109/INFVIS.2005.1532136.

[42] A. Fabbri, P. Ng, Z. Wang, R. Nallapati, and B. Xiang, “Template-based
question generation from retrieved sentences for improved unsupervised
question answering,” in Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, 2020, pp. 4508–4513,
https://doi.org/10.18653/v1/2020.acl-main.413.

https://doi.org/10.1145/3472749.3474792
https://doi.org/10.1145/3472749.3474792
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1109/VIS47514.2020.00041
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1109/TVCG.2018.2865145
https://doi.org/10.1109/TVCG.2018.2865145
https://doi.org/10.1109/INFVIS.2005.1532136
https://doi.org/10.1109/INFVIS.2005.1532136
https://doi.org/10.18653/v1/2020.acl-main.413

	Introduction
	Related Work
	Interactions in Computational Notebook Environments
	Visualization Recommendation for EDA

	WhatsNext: Guidance for EDA in Notebooks
	Interface and Pipeline
	The Low-code Design of Notebook Cells
	Question-driven Data Insight Exploration
	The Analysis Thread Visualization

	Discussion, Limitations, and Future Work
	Conclusion
	References

