
VISANATOMY: An SVG Chart Corpus with
Fine-Grained Semantic Labels

Chen Chen, Hannah K. Bako, Peihong Yu, John Hooker, Jeffrey Joyal, Simon C. Wang, Samuel Kim,
Jessica Wu, Aoxue Ding, Lara Sandeep, Alex Chen, Chayanika Sinha, Zhicheng Liu*

(c) multi-level fine-grained labels: each graphical element’s type, role, and position, hierarchical groupings of elements,
group layouts, and visual encodings.

(a) 40 chart types

(I) All Graphical Primitives (II) Reference Elements (IV) Hierarchical Grouping

(VI) Visual Encodings
for main chart marks

Group1

Group2

Group3

Group4

Group5

Group6

Group7

Group8

Group9

Group10

Group11

(V) Group Layout
(III) Element Type and Role

…

… …

…

(b) diversity in both chart structures and visual styles

…

Fig. 1: VISANATOMY is an SVG chart corpus that (a) consists of 942 charts across 40 chart types, (b) promotes diversity within
each chart type, featuring rich design variations in terms of visual structures and styles, and (c) distinguishes from existing chart
corpora in its multi-granular chart semantic labels on more than 383K graphical elements, including each element’s type, role, and
position, hierarchical groupings of elements, group layouts, and visual encodings.

Abstract— Chart corpora, which comprise data visualizations and their semantic labels, are crucial for advancing visualization
research. However, the labels in most existing corpora are high-level (e.g., chart types), hindering their utility for broader applications
in the era of AI. In this paper, we contribute VISANATOMY, a corpus containing 942 real-world SVG charts produced by over 50
tools, encompassing 40 chart types and featuring structural and stylistic design variations. Each chart is augmented with multi-level
fine-grained labels on its semantic components, including each graphical element’s type, role, and position, hierarchical groupings
of elements, group layouts, and visual encodings. In total, VISANATOMY provides labels for more than 383k graphical elements.
We demonstrate the richness of the semantic labels by comparing VISANATOMY with existing corpora. We illustrate its usefulness
through four applications: semantic role inference for SVG elements, chart semantic decomposition, chart type classification, and
content navigation for accessibility. Finally, we discuss research opportunities to further improve VISANATOMY.

Index Terms—Chart, SVG, data visualization, corpus, dataset, multilevel fine-grained semantic labels

1 INTRODUCTION

Visualization researchers have been curating chart corpora to advance
the state of the art in chart creation and generation [28, 22], classifi-

*All authors are with the Department of Computer Science, University
of Maryland, College Park, MD, USA. Emails: {cchen24, hbako, pei-
hong}@umd.edu, {jhooker, jjoyal, scwang00, skim1270, jwu36, ading1,
lsandeep, achen131, csinha}@terpmail.umd.edu, {leozcliu}@umd.edu

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

cation [39, 66], retrieval [46, 36], decomposition [15, 61], and edit-
ing [15, 21]. The availability of fine-grained semantic labels such as
element properties and data encodings is vital for a range of visual-
ization downstream tasks. For example, the shapes and roles of vi-
sual elements as well as their visual properties are required to develop
(semi-)automated data visualization reuse pipelines [15, 66]; the cor-
respondence between visual elements (or groups) and axis/legend la-
bels is necessary for developing chart reader experiences for visually
impaired people [79]; the grouping structure of visual elements can be
utilized to develop graph neural network models [46].

However, the semantic labels in existing chart corpora are often in-
sufficient and sometimes unreliable for supporting various visualiza-
tion tasks [15, 16]. According to two recent surveys [16, 25], many
corpora are not publicly available. The remaining ones typically have

only high-level labels (e.g., chart types [8, 66] and chart area bound-
ing boxes [27]). Although a few existing corpora do offer fine-grained
labels, they often exhibit limited diversity in terms of the variety of
chart-authoring tools and chart designs. This limited diversity hinders
the generalizability of models built upon those corpora: they can eas-
ily fail when handling “out-of-distribution (OOD)” charts produced by
other tools with inconsistent usage of SVG elements [46] and group-
ing structures [15]. In general, existing chart corpora are inadequate
to support the development of robust visualization applications.

In this paper, we seek to address these limitations and contribute
a diverse SVG chart corpus, VISANATOMY, with multi-level fine-
grained semantic labels. VISANATOMY includes 942 real-world SVG
charts and their corresponding multi-level semantic labels. The un-
derlying data tables are also included if available (329 out of 942).
The charts are collected through a manual process with careful in-
spection. For each chart, multiple independent expert annotators use a
semi-automated annotation tool to obtain the semantic labels, and the
quality of the labels is controlled through consensus among them.

VISANATOMY makes two key extensions over prior chart corpora.
First, regarding corpus diversity, VISANATOMY encompasses 40 chart
types (synthesized from three visualization typologies [14, 63, 30])
produced by over 50 tools from hundreds of public online sources,
featuring structural and stylistic design variations (Section 2). Second,
and more importantly, we identified a set of core components through
a survey on existing visualization scene models [48, 64, 65, 69] to
augment each chart in VISANATOMY with comprehensive seman-
tic labels, including each visual element’s shape (e.g., rectangle, pie,
polyline), role (e.g., main chart mark, axis path, legend tick, annota-
tion), and bounding box, the hierarchical grouping of elements, the
layout for each group, and visual encodings (Section 3.1). In total,
VISANATOMY provides labels for 383,459 visual elements.

We evaluate the richness of semantic labels and corpus diver-
sity through a comparison between VISANATOMY and existing cor-
pora (Section 3.4). Four applications illustrate the usefulness of
VISANATOMY (Section 4): semantic role inference for SVG elements,
chart semantic decomposition, chart type classification, and content
navigation for accessibility. Finally, we discuss the current limita-
tions of VISANATOMY and outline our future work (Section 5). The
VISANATOMY corpus is available at https://VisAnatomy.github.io/.

2 VISANATOMY: CHART COLLECTION

In this section, we introduce the process to construct VISANATOMY.
We first describe how the team decided on the desired chart types and
collected charts following a standardized procedure. We then give an
overview of the 942 charts in VISANATOMY, showing the distribu-
tions of the chart types, charting tools, and source domains.

2.1 Manual Chart Collection
Before the collection process started, we decided to focus on charts in
the SVG (Scalable Vector Graphics) format. In recent years, SVG has
emerged as a popular choice for curating corpora with fine-grained se-
mantic labels in diverse visualization applications [15, 46, 53, 61, 69].
Compared to raster images, SVG includes low-level details such as
element types and visual styles in its XML structure [16], removing
the need for error-prone image segmentation [57] and element extrac-
tion [56]. Compared to code, where a label extraction approach is not
easily generalizable to different visualization languages [55], SVG is
supported as the output format by a wide array of languages and tools.

We manually searched for and sampled real-world SVG charts on-
line to form the chart collection in VISANATOMY. There are other
approaches to collecting charts, such as web crawling, that could lead
to larger corpora. However, charts collected through automatic crawl-
ing cannot guarantee a balanced distribution of charts or diversity in
terms of chart types and design variations [16]. Also, since SVGs can
be embedded in web pages in various ways (e.g., inline SVG, object
tag, iframes), consistent extraction of SVG charts in practice is more
challenging compared to raster images, which are mostly directly em-
bedded. We therefore decided to follow a manual collection process
to ensure the quality and diversity of the SVG charts.

The first step in our chart collection process was to compile a set
of targeted chart types by browsing three visualization typologies: the
Chartmaker Directory [14], the Data Viz Project [30], and the Data
Visualisation Catalogue [63], each of which contains a detailed cate-
gorization of chart types. We cross-checked the named chart types in
these three collections and focused on visualizations that consist of ba-
sic geometric shapes including rectangle, circle, ellipse, pie,
arc, line, polyline, area, polygon, geo-polygon, and text.
For the underlying data in the visualizations, Munzner [58] defined
four types of datasets: tables (items & attributes), trees and networks
(nodes & links), fields, and geometry. We decided to focus on visu-
alizations of tables, thus excluding node-link diagrams and scientific
visualizations. Applying these criteria, we narrowed down to 31, 37,
and 37 chart types from the three typologies, respectively. Finally, we
unified the names of these chart types and achieved a final set of 40
chart types (Figure 2).

We then started collecting SVG charts for each chart type by
(1) browsing online charting tool galleries (e.g., D3.js [11], Vega-
Lite [65], Mascot.js [49]), (2) browsing online communities where
visualizations are shared by chart makers (e.g., Observable [60],
bl.ocks.org [10], Spotfire [70]), and (3) searching for certain chart
types using engines such as Google Advanced Image Search [1] (with
“SVG” specified as the target file type) and Bing Visual Search [3].
It is important to note that when collecting charts, we prioritized di-
versity over quantity because promoting rich design variations and
supporting broader visualization applications are our research goals.
Therefore, for each chart type, we focused on including designs from
different visualization galleries and websites, showcasing diverse vi-
sual styles. We aimed to include at least 20 designs for each chart
type. However, we kept adding new designs as long as they intro-
duced unique visual styles that had not yet been observed and did not
distort the overall distribution of chart types (i.e., an approximately
uniform distribution). We also examined the details of SVG files to
discard invalid ones, e.g., those using <image> elements with hyper-
links to render the whole chart. When the appearance of an SVG is
influenced by webpage style rules (i.e., CSS), we would first attempt
to manually inject the relevant styles into the SVG. If that was not fea-
sible, the SVG was discarded. Note that we mainly focused on styles
vital for chart integrity (e.g., color, stroke), and did not handle all the
font-related styles in this process. For each SVG chart collected, we
obtained its image in the PNG format with a Python script.

The project team consisting of six authors held weekly meetings
to inspect the collected SVG charts, removed unqualified charts (e.g.,
repeated or highly similar charts), and enforced consistent selection
criteria. Charts that do not fall into one of the 40 types but still em-
body interesting design ideas were moved to the “Others” category
where we store bespoke chart designs. This process was repeated until
we had the expected number of valid designs (i.e., 20) for each chart
type. This iterative process ensures that the whole team has at least
one pass on every collected chart and that issues with collected charts
are resolved consistently. After a 28-week chart collection effort, we
reached the final set of charts in both the vector and raster image for-
mats in VISANATOMY, containing a total number of 942 charts with
an approximately even distribution across the 40 chart types plus an
“Others” category, encompassing more than 50 charting tools and hun-
dreds of web domains (chart sources).

2.2 VISANATOMY Promotes Chart Diversity

Chart Types. In its current state, VISANATOMY contains 942 real-
world SVG charts. Each chart has its corresponding label file in the
JSON format, and is also available in the PNG (Portable Network
Graphics) format. Figure 2 shows the overall distribution of the chart
types categorized by the mark types. Within VISANATOMY, there are
40 named chart types together with an “Others” category containing
custom designs such as composite or superimposed charts that do not
fall appropriately into a specific chart type. Line graph, area chart, bar
chart, grouped bar chart, and the ”Others” category constitute higher
proportions in the corpus, and the number of charts in each remaining
type ranges between 20 to 26. This distribution makes VISANATOMY

https://VisAnatomy.github.io/

a balanced corpus with a wide variety of chart types.

Fig. 2: Chart type distribution in VISANATOMY categorized by pri-
mary mark types. Within each category the chart types are sorted al-
phabetically.

0 20 40 60 80 100 120140
Number of Charts

D3.js
R

Datylon
NIVO

HighCharts
Mascot.js

Plotly
ApexCharts

Vega Lite
FlexChart

ObservablePlot
AnyChart
Matplotlib

Diagrammm
AngularChart

C
ha

rt
in

g
To

ol

140
55

39
37

34
33
32
30
30

23
19

16
14
13
12

0 5 10 15 20
Number of Charts

ourworldindata.org
wikimedia.org

datavizcatalogue.com
wikipedia.org
spotfire.com

github.io
github.com

jaspersoft.com
itransition.com

patternfly.org
gov.uk

Observable.com
svend3r.dev

urban.org
macrobond.com

C
ha

rt
 S

ou
rc

e

24
22

14
11

10
9

8
8

7
7

6
6
6

5
4

Fig. 3: Distributions of chart types, charting tools (top-15), and source
domains (top-15) in VISANATOMY.

Charting Tools and Chart Sources. For each chart, we record in-
formation on the charting tool (if it is explicitly revealed in the source
website) and/or the website domain (if it is not coming from a charting
tool’s gallery). In total, VISANATOMY collects charts created using 58
charting tools and more than 100 different online domains. In Figure
3 we show the top 15 charting tools and chart sources. D3.js [11] con-
tributes the largest portion as it is the most expressive tool for creating
interactive web-based SVG visualizations [8]. Several other visual-
ization grammars and tools also provide a decent amount of charts
to VISANATOMY, including R [75], Datylon [24], NIVO [59], High-
charts [34], Mascot.js [49], Plotly [2], Apexcharts.js [5], and Vega-
Lite [65]. The number of charts is more evenly distributed across chart
sources, as most domains occur fewer than five times.
Design Variations. In VISANATOMY, we also strive for chart design
diversity within each chart type, featuring rich design variations in
terms of both chart structures and visual styles. Figure 1(b) shows
nine exemplary design variations for the stacked bar chart type. In
VISANATOMY, design variations include but are not limited to:

• different mark types used to create charts of the same type (e.g.,
bump charts composed of area marks or polylines with dots);

• different orientations of marks (e.g., connected dot plots contain-
ing horizontal or vertical glyphs);

• layering of marks (e.g., superimposed area charts);
• nested structures (e.g., small-multiple waffle charts and grouped

box and whisker plots);
• different positions, orientations, and visual styles of reference

elements such as axes, legends, and gridlines;
• different styles of annotations and embellishments.

We include detailed information of the chart types, tools, and sources
in VISANATOMY in the supplementary materials1.

1see detailed information of VISANATOMY’s chart collection.

3 VISANATOMY: MULTILEVEL FINE-GRAINED SEMANTIC LA-
BELS

We took an iterative in-house labeling approach to obtain high-quality
semantic labels for a set of core components synthesized from lit-
erature [48, 64, 65, 69]: mark elements reference elements, hierar-
chical grouping, visual encodings, and group layout. We decided
not to obtain labels through crowdsourcing to ensure the label qual-
ity in VISANATOMY. Crowdsourced labels often require significant
time to inspect and correct [43, 41, 78]. Moreover, our desired la-
bels require visualization expertise from the annotators, which is hard
to guarantee through crowdsourcing platforms. Three experts in the
team, each with at least four years of visualization research experi-
ence, participated in labeling the semantic components of the collected
SVG charts. In this section, we describe the semantic labels that are
associated with the charts in VISANATOMY and the labeling process.

3.1 Fine-grained Labels of Multilevel Scene Components
To support a broad set of visualization applications, we need detailed
semantic labels beyond just chart types [16]. Specifically, we need
a comprehensive understanding of the structure of a chart at multi-
ple levels of granularity, from its global-level chart type down to the
properties of individual elements. To this end, we surveyed related lit-
erature to compare existing visualization abstractions [48, 64, 65, 69].
We finally decided to focus on the labels for the following compo-
nents commonly shared across visualization grammars and abstrac-
tions: mark elements, reference elements, hierarchical grouping, vi-
sual encodings, and group layout. The supplemental materials contain
detailed descriptions of the components we have surveyed.

Using the stacked bar chart presented in Figure 1(c) as an ex-
ample, we show its scene structure (gray nodes and edges) to-
gether with the correspondence to the semantic labels recorded in
VISANATOMY in Figure 4. Specifically, Reference Elements specify
properties and involved elements for gridlines, axes, and legend;
All Graphic Primitives and Element Type and Role contain detailed informa-
tion about all graphical elements in the scene, including rectangle
marks and Reference Elements; Hierarchical Grouping and Group Layout cor-
respond to the spatial clusters and relationships along the right-
most branch (the collection subtree) of the scene graph, and
Visual Encodings record encoded channels for rectangle marks. Note
that in other types of visualizations, such correspondences remain sim-
ilar. We next give a detailed explanation of the six semantic labels by
walking through the example stacked bar chart (in Figure 1(c)).

scene

legendaxis collection of collections
grid (rows: 10, vertical)

collection of rectangle
stack (orientation: horizontal)

rectangle

gridlines

width: yield fill: variety

Group Layout

Reference Elements

Hierarchical Grouping

Visual Encodings

Element Type and Role

All Graphical Elements

Fig. 4: The components in the stacked bar chart from Figure 1(c) and
its correspondences to the labels in VISANATOMY.

All Graphic Primitives include every geometric shape and text element in
an SVG chart (leaf nodes in the SVG hierarchy). Each element has
several general properties, including element ID, element tag name,
text content (if any), and fill color. Each element’s bounding box is
expressed in absolute coordinates. Figure 1(c-I) presents three exam-
ple primitives and their properties in the stacked bar chart.
Reference Elements are titles, axes, legends, and gridlines in a chart. Ti-
tles and gridlines are specified with the IDs of the corresponding SVG

https://osf.io/962xc/?view_only=adbb315fd8794f6dac6b9625d385900f

(a) Axes and Legend (b) Element Type and Role (c1) Hierarchical Grouping

(d) Group Layout (e) Visual Encodings(c2) Hierarchical Grouping (CONT) (e) Visual Encodings

Fig. 5: The labeling tool we have developed to produce the semantics labels in VISANATOMY divides the labeling process into five stages:
Axis&Legend (a), Marks (b), Groups (c1, c2), Layout (d), and Encodings (e) and provides necessary interactions to accelerate the labeling process.

elements in the label file. Axes and legends contain information about
the type (e.g., x, y, angle, radius) and orientation (e.g., horizontal, ver-
tical), and they are further broken down into lower-level components
such as labels and ticks that are also specified with IDs of their cor-
responding elements. Figure 1(c-II) shows the semantic labels for the
x-axis, y-axis, and the color legend in the chart.
Element Type and Role record the shape type and semantic role of each
SVG element. In SVG files, the tag name of an element does not
always match the geometric shape. VISANATOMY resolves this am-
biguity through the Element Type label. For example, in Figure 1(c-III),
“path64”, the bar representing “Winsconsin No. 38” in Waseca, has
the tag name “path”, while its Element Type is labeled as Rectangle. In
addition, the same type of elements can play different roles in a chart.
For example, elements “path64” and “path82” are both rectangles in
Figure 1(c-III), but the former is labeled with the Element Role Main
Chart Mark and the latter is labeled as a Legend Mark.
Hierarchical Grouping reflects the multi-level semantic clustering of main
chart marks (elements whose Element Role is Main Chart Mark, i.e.,
the 60 colored bars from the main chart area). The example stacked bar
chart has 10 mark groups (“Group1” to “Group10”), each correspond-
ing to one of the 10 varieties of barley (i.e., “Glabron” to “Winsconsin
No. 38” along the y-axis), and they further form a higher-level group,
“Group11”, that encapsulates all the 10 lower-level groups. This hier-
archy is recorded in the label file as shown in Figure 1(c-IV).
Group Layout indicates the spatial relationship between visual objects
within one group (e.g., grid, stack, packing, radial) with orienta-
tion (e.g., horizontal, vertical, angular) and alignment parameters (e.g.,
bottom-aligned, left-aligned). This information is present for all
the groups at all levels. For example, in Figure 1(c-V), “Group1”
is labeled with a middle-aligned horizontal stack layout, and the
same layout applies across “Group2” to “Group10”; the higher-level
“Group11” is labeled as a left-aligned vertical grid layout.
Visual Encodings records which visual elements and channels are used to
encode data. Figure 1(c-VI) shows labels for visual encodings in the
stacked bar chart, indicating that the bar “width” and “fill” encode
data values. In some charts, the visual channels of a group can encode
data as well. For example, in a small-multiple design of grouped bar
charts, the position of each bar chart can encode the approximate geo-
graphic location of the corresponding U.S. state. VISANATOMY thus
organizes visual encoding labels by each visual object’s ID.

These semantic components are used as fundamental building

blocks in programming libraries such as Mascot.js [48] and authoring
tools like Charticulator [62]. They are expressive enough to describe
not only standard charts but also bespoke designs, as evidenced by
these tools’ galleries. Our labeling effort, described in the next sec-
tion, confirms the expressivity of these components.

3.2 Labeling with A Semi-Automated Tool

These semantic labels are created using a semi-automated chart label-
ing tool we have developed. According to Chen and Liu [16], obtain-
ing high-quality chart labels is expensive and time-consuming, espe-
cially for complex labels that require careful examination of charts.
Moreover, SVG charts have diverse hierarchical structures and utilize
SVG elements in various ways, especially when they come from dif-
ferent tools and sources. To address these challenges, we have devel-
oped a mixed-initiative multi-stage labeling tool to facilitate the pro-
cess and mitigate laborious inspection.

The annotation tool divides the labeling process into five stages:
Axis&Legend, Marks, Groups, Layout, and Encodings. Figure 5 shows
the system user interface and an example labeling workflow using the
stacked bar chart in Figure 1(c). Upon loading the chart, the system
traverses the SVG hierarchy to obtain All Graphic Primitives . Then the
system leverages the heuristics-based methods reported in the Mys-
tique system [15] to detect the chart title, axes, and legend, and dis-
plays the results in the Axis&Legend UI accordingly (Figure 5(a)). The
annotator can correct the results through drag-and-drop or lasso selec-
tion over SVG texts to revise Reference Elements; for example, in Fig-
ure 5(a), the annotator is dragging the text “500” from the chart into
the x-axis label box. The annotator can also add more axes if more
than two axes exist (e.g., in parallel coordinates).

Once the annotator finishes inspecting the results in this stage, they
can click the “Next” button to go to the Marks stage, where the full
list of graphical elements is displayed (Figure 5(b)). The annotator
can click to select a single mark, batch-select multiple marks through
the generalized selection options [32] (e.g., selecting the same-type
or same-color marks), or shift-click to select consecutive marks in the
mark list. When a set of marks is selected, they will be highlighted in
full opacity in the chart, while all other elements will be partially trans-
parent. The annotator can label the Element Type and Role of the selected
marks through the corresponding drop-down menus. In Figure 5(b),
the selected paths are assigned Element Type Rectangle and Element Role
Main Chart Mark. At this stage, the annotator would also need to

specify gridlines and low-level components for axes and legend (e.g.,
ticks, paths), so that the Reference Elements label is complete.

In the next stage, Groups, the annotator specifies Hierarchical Grouping

on all the main chart marks. Since the use of the <g> tag is incon-
sistent across charts produced by different tools [15, 16], the original
SVG grouping information is ignored by the labeling tool. To select
marks for grouping, the annotator can click to select individual ele-
ments, make a lasso selection (Figure 5(c1)), or choose from the gen-
eralized selection options. The selected marks can then be grouped
by clicking the “Group selected marks” button. After that, the system
will recommend a list of inferred “other mark groups”, and the anno-
tator can either agree to finish the lowest-level grouping or disagree
to continue grouping manually. Once all lowest-level mark groups are
specified, the annotator clicks the “Specify higher-level groups” but-
ton to go to the second phase of the Groups UI, where they work on
higher-level grouping, e.g., in Figure 5(c2) the annotator has selected
all 10 mark groups and are merging them into one final group.

After Hierarchical Grouping is finished, the annotator goes to the Layout
stage. Here the hierarchical groups will be displayed as a collapsible
nested list with clickable items. The annotator can click on an indi-
vidual group and label its layout type and parameters, as shown in
Figure 5(d). In the final Encodings stage, the system adds mark items
to the nested list and lets the annotator specify their encoded visual
channels (Figure 5(e)). The visual channel list will be updated accord-
ingly based on Element Type of the selected element. In both the Layout
and Encodings stages, the annotator can apply the label of one group or
mark to its peers, i.e., same-level and same-type objects, to accelerate
the process of assigning Group Layout and Visual Encodings .

At any time during the labeling process, the annotator can click on
the “save” button in the upper-right corner of the interface to save a
local copy of all semantic labels created so far in the JSON format.
When the same chart is loaded next time, the system will automati-
cally retrieve the corresponding label file (if it exists), and load the
semantic labels in the UI accordingly to allow the annotator to inspect
existing labels and continue unfinished work. The semi-automated la-
beling system and a document recording the options for Element Type ,
Element Role , types and parameters of Group Layout , and channels of
Visual Encodings , are included in the supplementary materials2.

2see the code and details for the labeling system.

3.3 Iterative Annotation and Quality Control
Using the system to produce high-quality semantic labels requires suf-
ficient knowledge and expertise in the visualization field. Thus, we
adopt an iterative approach to obtain the labels from three experts who
are familiar with visualization abstraction papers in the team. The
first author, a Ph.D. student who has published peer-reviewed papers
in visualization-related conferences (e.g., VIS, EuroVis), performed
the first-round labeling. The time required to finish labeling one chart
ranges between 10 to 20 minutes. After that, the second author, a
Ph.D. student who has published at visualization-related conferences
such as VIS and IUI, and the last author, a researcher who has been
contributing to the visualization community for more than 15 years,
performed the second-round inspection. Each chart has been reviewed
by at least two experts on the team. Whenever disagreements over
certain semantic labels arose, the three authors discussed the cases to
reach a consensus on the correct labeling approach, and all the charts
with features related to the issues would be re-labeled. These discus-
sions not only improved the consistency and accuracy of the labels but
also enhanced the labeling system.

3.4 Comparing VISANATOMY with Related Corpora
In this section, we compare VISANATOMY with nine existing chart
corpora: Beagle [8], YOLoT++ [29], REV [61], MASSIVE [9],
MVV [19], VisImages [27], Chart-LLM [44], VisText [71], and Vi-
sEval [18] (results are shown in Table 1). These corpora were selected
based on the following criteria: the corpus should be publicly avail-
able, contain chart images, and have been published at VIS or HCI
venues. Based on the criteria, we did not include the Visually29k cor-
pus [50] as it focuses on infographics and the VIS30K corpus [17]
which contains images of data tables.

VISANATOMY distinguishes from other chart corpora in two major
aspects: the rich, multi-granular chart semantic labels, and its diversity
regarding chart types, designs, and sources. In terms of the number
of charts, VISANATOMY is comparable to datasets that specifically
emphasize label quality, such as VisEval [18] and Chart-LLM [44],
which contain around one or two thousand samples. Although corpora
such as Beagle [8] collect many more charts through web crawling,
they tend to include duplicate designs with unbalanced chart distri-
butions [15]. Moreover, they lack fine-grained component-level la-
bels. On the other hand, corpora created through computer-aided
generation (e.g., YOLaT++[29]) do provide fine-grained component
labels, but are highly restricted in terms of chart and tool diversity.

Table 1: A comparison between VISANATOMY and nine related chart corpora in their current states. ✓ indicates the existence of a certain
property in the corresponding corpus, ✓ indicates partial existence, ✓ means a property is absent in the current state but can be obtained with
some effort, and - indicates that a property is unavailable.

VisAnatomy MVV [19] VisEval [18] YOLaT++ [29] REV [61] VisText[71] Beagle [8] MASSIVE [9] VisImages [27] Chart-LLM [44]

Primary Collection Method
Manual
Curation

Manual
Curation

Transforming An
Existing Corpus

Computer-Aided
Generation

Computer-Aided
Generation

Computer-Aided
Generation

Web
Crawling

Web
Crawling

Web
Crawling

Web
Crawling

Charts 946 360 1,150 15,197 5,125 12,441 ∼41,000 2,070 12,267 1,981

Types 40 14 7 11 4 3 24 12 34 10

Tools 58 - 1 2 - 1 5 - - 1

Format
SVG ✓ - - ✓ ✓ ✓ ✓ - - ✓

Bitmap ✓ ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓

Program - - ✓ ✓ - ✓ - - - ✓

Label

Chart Type ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Chart BBox ✓ ✓ - - - - - - ✓ -

Element BBox ✓ - - ✓ ✓ ✓ - - - -

Legend Elements ✓ - - ✓ ✓ - - - - -

Axis Elements ✓ - - ✓ ✓ ✓ - - - -

Element Shape ✓ - - ✓ - ✓ - - - -

Element Role ✓ - - ✓ ✓ ✓ - - - -

Mark Grouping ✓ - - - - - - - - -

Group Layout ✓ - - - - - - - - -

Visual Encoding ✓ - - - - - - - - ✓

(NL, VIS) pairs - - ✓ - - ✓ - - - ✓

https://osf.io/962xc/?view_only=adbb315fd8794f6dac6b9625d385900f

VISANATOMY balances between promoting diversity for real-world
charts and maintaining quality control for fine-grained labels. The la-
bels for over 380K visual elements in VISANATOMY adequately sup-
port applications requiring extensive component-level annotations.

4 USE CASES

To showcase the utility of VISANATOMY, we present four use cases,
each focusing on a specific downstream visualization application:

• Inferring semantic roles of SVG elements with Large Language
Models (LLMs): we evaluate two LLMs to examine their capabili-
ties of classifying SVG elements into component types.

• Decomposing rectangle-based SVG charts for layout reuse: we use
VISANATOMY to obtain a validation set to evaluate the performance
of an existing system Mystique [15].

• Classifying chart types using Graph Neural Networks (GNNs) [76]
and vision models: we report and compare the performance of vi-
sion models and graph models using VISANATOMY as a benchmark
corpus, and discuss the trade-offs involved.

• Supporting accessible navigation of chart content for visually im-
paired people: we demonstrate how VISANATOMY can enable the
replication of the rich screen reader experiences through keyboard
navigation as described in the study by Zong et al. [79].

The four use cases span different requirements on the semantic la-
bels, from low-level mark details (e.g., SVG element role) to high-
level chart information (e.g., chart type). Through these applications,
we demonstrate how VISANATOMY can enable tighter integration of
AI in visualization. In addition, we illustrate how the semantic la-
bels in VISANATOMY ease the constraints on input formats such as
the necessity for charts to be created with specific tools, supporting a
wider range of input charts. The supplementary materials3 include our
implementations, detailed results, and demo videos for the use cases.

4.1 Semantic Role Inference with LLMs
Inferring chart semantics is a classic task in automated visualization
understanding. For instance, ReVision [66] utilizes vision models to
detect the mark types and the underlying data used in a bitmap visu-
alization. More recently, with the rapid advancement of LLMs, re-
searchers have found that (1) text-based chart specifications improve
the performance of language models (LMs) on chart-reading tasks
compared to vision-based approaches [12], and (2) the existence of
semantic information for SVG elements (so called “Primal Visual De-
scription (PVD)”) boost the performance of LMs for vector graphics
reasoning [74]. In this use case, we would like to examine the ca-
pabilities of current LLMs in semantic inference; more specifically,
we focus on the task of classifying SVG elements into the follow-
ing categories: main chart elements (marks), axes (titles, labels), and
legend (titles, labels, marks). This classification is an important pre-
requisite for many downstream tasks [15, 61], and we evaluate it using
one open-source LLM (DeepSeek-V3-0324 [47]) and one proprietary
LLM (GPT-4o [38]).
Prompt. The prompt contains the role specification (“expert in ana-
lyzing SVG-based data visualizations”), the task (“identify and cate-
gorize different visual elements in the provided SVG chart into main
chart marks, legend components (title, mark, label), and axis compo-
nents (title, label)”), explanations on the semantic categories, and the
required JSON-format output. For both models, we utilized their cloud
APIs for inference due to their significant large model sizes.
Results. DeepSeek-V3 successfully processed 772 charts and GPT-
4o processed 835, according to their respective context length con-
straints (i.e., input token limits of 64K for DeepSeek-V3 and 128K
for GPT-4o). To make it a fair comparison, we report results from
the 772 charts processed by both models. We compare their infer-
ences with the ground truth annotations from VISANATOMY (Main
Chart Marks and Reference Elements), and record F1, precision, and re-
call scores for each semantic category.

3see our implementations, results, and demo videos for the use cases.

Fig. 6: Performance of two LLMs in inferring the semantic roles of
SVG elements for 772 charts. The whiskers show 1.5 × IQR thresh-
olds, and the dots are considered “outlier” charts.

The two LLMs achieve comparable performances in terms of the
overall F1 scores: DeepSeek-V3 (mean 0.841, median 0.870), GPT-
4o (mean 0.839, median 0.929). Both models performed well in rec-
ognizing axis titles, legend marks, legend labels, and legend titles,
with the maximum, median, and 1.5 × IQR all equal to 1 (Figure 6).
The performance of both models in inferring main chart marks and
axis labels is comparatively lower than for the other categories, with
DeepSeek-V3 demonstrating superior results to GPT-4o for these two
categories. Based on this result, the current state-of-the-art LLMs
show promising performance in recognizing the semantic roles of SVG
elements, indicating a great potential to develop LLM-assisted sys-
tems for SVGs. In addition, when working with these LLM inferences,
careful human verifications and corrections need to be supported, es-
pecially for main chart marks and axis labels.

We also examined model performance across different chart types,
as these vary in design elements and complexity. The key finding here
is that GPT-4o tends to be more accurate on more complex charts com-
pared to DeepSeek-V3, and vice versa. For instance, DeepSeek-V3
achieves better mean F1 scores in traditional statistical visualizations
such as simple bar charts (0.887 vs 0.543, 63% performance gap), area
charts (0.876 vs 0.641, 37% gap), and stacked bar charts (0.902 vs
0.607, 49% gap), while GPT-4o exhibits superiority with lower mar-
gin in complex visualizations including circle packing diagrams (0.959
vs 0.885, 8% gap), bullet charts (0.850 vs 0.697, 22% gap), and be-
spoke visualizations (0.915 vs 0.846, 8% gap). These performance
gaps may be attributed to potential differences between visualization
training data used for these LLMs and suggest the need for fine-tuning
for better results across chart types.

Finally, we analyzed model performance across charting tools, fo-
cusing on 18 tools that each contribute at least 10 charts, resulting
in a total of 401 charts. (Note that tool information is unavailable
for certain charts in VISANATOMY.) DeepSeek-V3 achieves a mean
F1 above 0.9 for 16 of these tools, while GPT-4o does so for only
7 tools. AnyChart [4], FlexChart [72], AngularChart [6], Matplotlib
[54], Semiotic [68], and Mascot.js [48] appear in the top performers
for both models. The performance on charts created with the follow-
ing tools shows a substantial discrepancy between the two models: R
(0.692 for GPT-4o, 0.959 for DeepSeek-V3) and NIVO [59] (0.765
for GPT-4o, 0.960 for DeepSeek-V3). D3.js [11] presents a challeng-
ing case for both models (0.769 for GPT-4o, 0.863 for DeepSeek-V3),
probably due to D3’s high versatility and expressivity.

4.2 Chart Layout Deconstruction
Unlike previous corpora that lack semantic information on low-level
components, VISANATOMY specifies the mark grouping, layout, and
data-channel encoding information, which play a vital role in the task

https://osf.io/962xc/?view_only=adbb315fd8794f6dac6b9625d385900f

of chart decomposition and reuse. Most approaches that focus on
this task, such as D3 Deconstructor [31] and ChartReuse [21], re-
quire the input charts to be created using a specific tool. A more
recent work, Mystique [15], designed a tool-agnostic decomposition
and reuse pipeline for general SVG charts composed of rectangle-
shape marks based on a diverse 150-chart corpus. What lies at the
core of Mystique is a bottom-up hierarchical clustering algorithm that
determines nested mark groups and their internal spacial relationships
presented in a chart. In this section, we use VISANATOMY to form a
validation set to evaluate the generalizability of the hierarchical clus-
tering algorithm from Mystique on unseen charts.

To prepare the validation set, we first filter the charts based on the
Element Type labels, and only keep those having the Rectangle type for
all main chart marks, resulting in 306 charts. Given that Mystique
does not consider radial and spiral layouts, we exclude spiral plots and
bar charts in the radial layout. We further remove charts that were al-
ready included in Mystique’s corpus. The final validation set consists
of 248 charts encompassing 15 chart types. We then run Mystique’s hi-
erarchical clustering algorithm using the main chart marks of each
chart in this validation set as input, and the results are compared
with Hierarchical Grouping and Group Layout labels in VISANATOMY. For
the error cases, we perform another round of manual inspection to
avoid false negatives as some charts have multiple reasonable group-
ing structures (e.g., a diverging bar chart) [15].
Results. 217 charts (out of 248) within the validation set are decom-
posed into their correct grouping structures and corresponding spa-
tial relationships, making an approximate 87.5% accuracy (8% lower
compared to the test accuracy reported in Mystique [15]). Examining
the 31 error cases, we report three kinds of failure cases that were not
discovered by the authors of Mystique [15]:
1. A slice-and-dice treemap (Figure 7(a)), whose overall packing lay-
out was wrongly recognized as a vertical stack layout by Mystique’s
decomposition algorithm, leading to incorrect mark groups;
2. Glyph-based charts where the marks within a glyph do not always
overlap, e.g., in Figure 7(b), the three lighter gray bars are stacked
within each row without overlapping. The decomposition algorithm
uses overlapping relationships to detect glyphs and fails in such cases;
3. A bespoke Gantt-calendar chart (Figure 7(c)) where the bar groups
are positioned based on data and the bars within each group follow a
horizontal stack layout. The algorithm fails to decompose this chart
correctly, giving a lowest-level packing layout instead.

(a) (b)

(c)

Fig. 7: Three new kinds of failure cases have been observed when
evaluating the hierarchical clustering algorithm in Mystique [15] on
a validation chart set generated from VISANATOMY: (a) a treemap
visualization, (b) a bullet chart, and (c) a bespoke Gantt-calendar chart.

In summary, the generalizability of Mystique’s hierarchical cluster-
ing algorithm is satisfactory, which corroborates the authors’ claim on
their corpus’ diversity. Nevertheless, the new error cases and Mys-
tique’s lack of support for additional mark types and layouts call for
more intelligent decomposition and mixed-initiative reuse approaches.

4.3 Chart Type Classification

Chart type classification is a typical visualization task, serving as
the first step in many end-to-end systems such as Revision [66],

ChartSense [39], and REV [61]. Various models, including Sup-
port Vector Machines (SVMs) [20] and Convolutional Neural Net-
works (CNNs) [45], have been explored. However, existing work
mostly assumes bitmap images as inputs, and focuses on coarse
chart taxonomies with approximately a dozen categories. Consider-
ing that SVG is a highly structured data format, Graph Neural Net-
works [67, 76] could be a good fit [16], which have shown bet-
ter results than image feature-only models in tasks such as chart re-
trieval [46] on a corpus of Plotly [2] charts. In this case study, we
explore two questions: 1) how well GNNs classify SVG charts an-
notated with various semantic labels, and 2) how vision models and
graph models perform when the number of chart types increases to 40.
Node Feature Extraction and Inclusion Criteria. If we focus on
the raw SVG representations, we can designate basic shape elements
such as <line> and <circle> as nodes in the graph. These ele-
ments correspond to All Graphic Primitives in VISANATOMY, and contain
main chart marks, Reference Elements , and background noise (e.g.,
background rectangles, offscreen tooltips). To extract node-level fea-
tures, we consider the following common features shared by differ-
ent SVG element types for simplicity: (1) node-type, which is a one-
hot encoding over the SVG element types, (2) node-position, which
is a four-dimensional vector indicating the node’s bounding box in
top, right, bottom, and left coordinates, and (3) node-style, a
three-dimensional binary vector indicating the existence of the fill,
stroke, and stroke-width style properties in the SVG file. We can
scale the node-position feature using the width and height of the source
SVG chart so that all values are within the range [0, 1]. In addition to
shape elements, we also designate SVG container elements like <g>
and <SVG> as graph nodes, which only have the node-type feature with
other feature dimensions filled with 0.

With the semantic labels in VISANATOMY, we can also restrict
graph nodes to elements with Main Chart Mark as their Element Role ,
so we only focus on the chart content and remove potential noise. In
addition, the node-type feature from the raw SVG file can be inaccu-
rate, as it is normal for SVGs to represent different shapes (rectangles,
circles, etc.) with <path> elements [16]. Thus, a more accurate ver-
sion of the node-type feature can be the one-hot encoding over the
ground-truth mark types from Element Type .
Edges Definitions. Once the graph nodes are processed, we consider
two potential ways to define edges. First, we can add edges based on
the hierarchical organization between SVG elements and their parent
containers in the raw SVG file. Alternatively, we can add the groups
from Hierarchical Grouping (instead of the SVG container elements) as
nodes to the graph, and construct edges based on the relation of sub-
ordination in Hierarchical Grouping .
Graph Construction. Combining the above variations of node defini-
tion, feature extraction, and edge definition, we present the following
four graph representations with increasing amounts of semantic labels:

• SVG-Only (Graph 1): SVG shape and container elements as nodes, and
parent-child relationships from the SVG hierarchy as edges;

• SVG-MainChart (Graph 2): main chart marks based on Element Role and
SVG container elements as nodes, and parent-child relationships
from the SVG hierarchy as edges;

• SVG-MainChart-MarkType (Graph 3): main chart marks based on
Element Role and SVG container elements as nodes, with ground-
truth one-hot encoding of Element Type as the node-type feature, and
parent-child relationships from the SVG hierarchy as edges;

• SVG-MainChart-MarkType-Grouping (Graph 4): main chart marks based
on Element Role and groups from Hierarchical Grouping as nodes, with
ground-truth one-hot encoding of Element Type as the node-type fea-
ture, and group-child relationships from Hierarchical Grouping as edges.

Tasks. We consider two classification tasks: a 6-category problem
where we follow the taxonomy from VisImage [27] to generate 6 high-
level categories (Area, Bar, Circle, Line, Point, Grid&Matrix) cover-
ing 28 chart types, and the full 40-type problem. Within each type, we
split charts into the train and test sets randomly using a 6 : 4 ratio.

0 25 50 75 100 125 150 175 200
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9
To

p-
1

Te
st

 A
cc

ur
ac

y

Graph Transformer + Graph V1
Graph Transformer + Graph V2
Graph Transformer + Graph V3
Graph Transformer + Graph V4
ViT Small + Image
MobileNetV3 + Image

(a) 6-class classification task.

0 25 50 75 100 125 150 175 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

To
p-

1
Te

st
 A

cc
ur

ac
y

Graph Transformer + Graph V1
Graph Transformer + Graph V2
Graph Transformer + Graph V3
Graph Transformer + Graph V4
ViT Small + Image
MobileNetV3 + Image

(b) 40-class classification task.

Fig. 8: Learning curves from the six models: top-1 test accuracy.

Model Training. We use a 3-layer Graph Transformer [77] net-
work with 1.37M parameters to perform graph-based inference with
Graph 1 to Graph 4. We also finetune on two pretrained vision models:
MobileNet-v3-small (2.55M parameters) [35] and ViT-small (22.1M
parameters) [13] with the bitmap images in VISANATOMY. For each
model, we perform 5 independent runs to minimize noises; during
training, we use the Adam optimizer [42] with a learning rate of 0.001
for graph models and 0.0001 for vision models for 200 epochs. The
machine was NVIDIA GeForce RTX 2080Ti.
Results. Figure 8 presents the learning curves from the six mod-
els regarding the top-1 test accuracy. Generally, in both tasks we
can observe that with more semantic information revealed to Graph
Transformer, its performance is significantly enhanced (especially
from Graph 3 to Graph 4), demonstrating the usefulness of Element Role ,
Element Type , and Hierarchical Grouping from VISANATOMY.

Compared to MobileNet-v3 which has 86% more parameters,
Graph Transformer obtains the same-level performance with Graph 3
and better test accuracy with Graph 4. Although semantic labels are
required prior to training, the Graph Transformer can be trained much
faster: its average second-per-epoch is 0.53 while that for MobileNet-
v3 is 30.8. The best performance is given by ViT-small, which has
approximately 16.7% gain in test accuracy compared to Graph Trans-
former with Graph 4 for the 40-class task. However, ViT-small is a
much larger model with 15 times more parameters and an average
second-per-epoch of 33.37. Based on the result, test-time label infer-
ence and semantic-rich graph construction for enhanced graph-based
modeling are promising directions for future work.

4.4 Content Navigation for Accessibility

VISANATOMY not only serves as a benchmark dataset for evaluating
algorithms and models, but also as a valuable resource for researchers
to develop visualization applications that use SVG charts as input. We
demonstrate its utility by replicating a project focused on chart acces-
sibility, which involves designing chart reading experiences for peo-
ple with visual impairments. Current visualization accessibility prac-
tices link textual descriptions of charts (usually provided by the au-
thors through alt texts) to the underlying data tables so that assistive
screen readers can communicate some high-level chart semantics to

the user [73]. However, this paradigm does not offer visually impaired
individuals the same level of chart exploration experiences that sighted
people can access through interactive visualizations [79]. In response,
Zong et al. [79] propose a chart accessibility tree as the underlying
structure for traversal of a chart’s scene graph: the user navigates along
multi-level branches of the accessibility tree through a keyboard.

Considering that the demos provided by Zong et al. [79] are imple-
mented with Vega-Lite charts, here we demonstrate that the semantic
labels in VISANATOMY can support the construction of the accessibil-
ity trees for charts created using other tools. To re-create the accessible
chart reading experiences, we focus on the five examples in the gallery
of Zong et al.’s work (Figure 2 in [79]), and choose five charts from
VISANATOMY that have very close visualization designs: a faceted
connected dot plot [52] from Mascot.js, a multi-line chart [33] from
HighCharts, a geographical heatmap [23] from D3.js, a stacked bar
chart [7] from Apexcharts.js, and a bar chart with annotations [26]
from poetrybetweenpain.deb.is. In our implementation, we focus on
the following navigation patterns: structural navigation with
the Up, Down, Left, Right arrow keys, spatial navigation with
the WASD keys across grids, and lateral navigation across facets
with the Shift+Left and Shift+Right key combinations. We next
briefly introduce how we implemented the accessibility trees (illus-
trated in Figure 9) for the faceted connected dot plot and the multi-line
chart example. We include the construction processes for the other
three charts in the supplementary materials.

Summary

Facet(1 of 2)

Y Axis

Data

…

…

Summary

18. Dec – 1. Jan 1. Jan – 15. Jan

18. Dec – 25. Jan 25. Jan – 1. Jan

… …

…

…

(a) Faceted Connected Dot Plot

…

(b) Multi-Line Chart

Spatial Spatial

Lateral

Grid

Fig. 9: Navigation patterns re-created in (a) a faceted connected dot
plot and (b) a multi-line chart using labels from VISANATOMY.

Faceted Connected Dot Plot (Figure 9(a)): Starting with the whole
SVG chart as the root, we introduce two branches corresponding to
the two facets using Hierarchical Grouping . Each branch has several con-
nected dot pairs as children, which are linked to their corresponding
y-axis labels in Reference Elements based on their y coordinates obtained
from All Graphic Primitives . Once the Shift + Left/Right combination is
detected, the focus will be shifted to the other facet branch’s dot pair of
the same index to support the lateral navigation. The leaf nodes
in the structural navigation tree are the individual dots.
Multi-Line Chart (Figure 9(b)): A binary accessibility tree simi-
lar to that in [79] is formed. The range of the x-axis labels from
Reference Elements is split into two, each is attached to the SVG root node
as a child and linked with marks whose x coordinates are in the range.
This binary range partition continues until only one mark is inside;
the whole binary accessibility tree is then used for the structural
navigation. We further support spatial navigation with the
WASD keys across grids: x and y coordinates of gridlines from
Reference Elements are obtained to cut the coordinate system into 2-
dimensional grids, which are regarded as children of the SVG root.
The S key triggers the spatial navigation mode starting with the
upper-left grid and the Up arrow key brings the user back to the root.

Overall, we find it straightforward to construct the chart acces-
sibility tree using the semantic labels from VISANATOMY: once
the tree structure is decided, the mappings between the tree nodes
and the graphical objects in the chart can be retrieved with the help
of Hierarchical Grouping , Element Type and Role , position and color prop-
erties in All Graphic Primitives , and axis and legend information from
Reference Elements . The supplementary materials include demo videos
and a web application for re-created navigation patterns on the five
charts. However, we have also observed a few places where semantics
beyond VISANATOMY are required. For example, for the geographi-
cal heatmap example, the underlying CSV data from the source web-
site is needed to obtain names of provinces and cities represented by
marks; for the annotated bar chart example, the affixation of annota-
tion texts onto the main chart bars needs to be determined in advance.
We include more discussion on these issues in Section 5.

5 DISCUSSION AND FUTURE WORK

Dealing with Real-World SVG Charts. SVG charts found in the
wild exhibit considerable noise and heterogeneity, even among charts
of the same type. The semantic labels in VISANATOMY significantly
reduce the noise, but there are still edge cases we cannot handle prop-
erly (e.g., the entire box glyph in a box-and-whiskers plot drawn using
a single <path> element). The semantic labels for the same type of
charts can also vary. For instance, in some bullet charts, the rectangles
in the same glyph are overlapping and aligned to one side (e.g., left or
bottom), while others stack the rectangles without overlapping (Fig-
ure 7(b)). We label the former as a group with a glyph layout, and the
latter as a group with a stack layout. The implications of these cases on
downstream applications remain to be explored and better understood.
Strengthening Data Component Labeling. Currently VisAnatomy
has two kinds of labels recording mappings between data and visuals:
1) Visual Encodings record which visual element (e.g., mark, collection)
and which channels of that element (e.g., color, position) encode data,
and 2) Reference Elements record the type of data attribute (e.g., number,
string) and the channel (e.g., width, x position) for each axis. For
mappings that do not have associated axes or legends, information on
the type of data attribute is missing and needs to be included.

In its current state, only 392 charts (out of 942) in VISANATOMY
have the underlying data tables available. However, data tables offer
important information such as data schema and attribute values that
can be useful for applications like visualization redesign and recom-
mendation [37]. In future work, we plan to augment charts that lack
underlying data tables by investigating methods to automatically re-
construct these tables using existing labels such as Reference Elements
and Visual Encodings . If fully automated approaches are not possible,
we plan to extend the current data extraction methods (e.g., ChartDe-
tective [53]) and add a Data Table stage in our labeling tool, allowing
human-machine collaborative curation of the underlying data table.
Labeling Inter-Element Relationships as Constraints. Some
chart scene abstraction frameworks, such as Charticulator [62] and
MSC [48] which inspired the semantic labels in VISANATOMY (Sec-
tion 3.1), have a constraint component that describes the spatial
relationships between elements. Examples include align (e.g., cus-
tomized alignments in stacked bar charts) and affix (e.g., the relative
positioning between a mark and its annotations). VISANATOMY cur-
rently does not have labels on such constraints. The main challenge
is that manually linking every pair of elements (e.g., a bar and its
text annotation) and specifying their relationships as constraints can
be time-consuming and error-prone. We need automatic algorithms to
recognize and predict such constraints in batch, and novel interaction
models to support generalizable constraint labeling.
AI-Assisted Labeling. A significant portion of our time on this project
was dedicated to developing and refining the labeling system. Label-
ing one chart using the system takes 10 to 15 minutes on average right
now. The labeling efficiency can be further improved with the incorpo-
ration of AI models. In Section 4.1, we have shown that current LLMs
can predict the semantic roles of SVG elements with good accuracy
overall, such labels can thus be automatically populated. However, we

need better interfaces for humans to verify and correct mistakes, espe-
cially for axis labels and main chart marks. We also plan to investigate
additional AI support (e.g., fine-tuning LLMs using VISANATOMY)
for labeling other components like grouping and encoding.
Further Enhancing the Corpus. Although the number of charts in
VISANATOMY is comparable to state-of-the-art chart corpora curated
using manual approaches (Section 3.4), and the scale of fine-grained
labels can support various applications (Section 4), VISANATOMY can
be enlarged further with more chart designs and intra-type variations.
We will open-source VISANATOMY and our labeling tool to encour-
age contributions from the visualization community. We have also ex-
perimented using synthetic data to augment the size of VISANATOMY.
To do this, we (1) converted charts in VISANATOMY to scene tem-
plates in Mascot.js [48], (2) generated compatible synthetic datasets,
and (3) used Mascot.js to infuse the synthetic datasets with the tem-
plates. Example charts are included in the supplementary materials.
We decide not to include these generated charts in VISANATOMY: the
distribution of the synthetically generated data should be determined
according to the specific machine-learning task or interactive appli-
cation; it is better that VISANATOMY only contains the original real-
world charts, which can be augmented in different ways depending on
the use case. Future research may develop approaches to promoting
diversity in the underlying data and the visual styles at the same time,
and to achieve a desired balance between quantity and diversity.

VISANATOMY does not yet include node-link visualizations. The
main challenge in labeling is similar to that in labeling constraints: au-
tomatic algorithms are needed to recognize and predict relationships
between nodes and links. Composite visualizations, where one chart
overlays on another with each chart having its own axis, are not within
the scope either. By focusing on SVG charts, we may also have omit-
ted unique visualization designs that are available only in formats like
raster images. VISANATOMY can be further enriched by including
these missing charts, with AI-assisted methods to label components.
Enhancing the Breadth and Depth of Applications. The GNN mod-
els tested in Section 4.3 are homogeneous, having the same feature
length for all the nodes. Supporting node features of unequal lengths
for different types of nodes could be a better approach. Second, the se-
mantic labels have the potential to support the development of rigorous
approaches to computing pair-wise chart similarities, which can serve
as a quantitative measure to evaluate corpus diversity [16], guiding
the future collection of chart corpora. Third, for research that com-
bines Visualization and Natural Language (NL) to solve tasks such
as chart QA [40] and chart captioning [51], the diverse set of charts
in VISANATOMY and the associated semantic labels can be utilized to
synthesize datasets that contain high-quality (VIS, NL) pairs, enhanc-
ing the generalizability of multi-modal models.
Supporting Interaction and Animation Labeling. Currently
VISANATOMY focuses on semantic labels in static charts. A future
direction is to annotate interaction and animation. The semantic labels
of static components are based on existing visualization abstraction
models; we envision that the annotation of interaction and animation
also requires solid theoretical foundations on dynamic visualizations.
We will investigate how interaction grammars like Vega-Lite [65] may
be used and explore additional abstractions.

6 CONCLUSION

In the paper, we contribute VISANATOMY, a diverse SVG chart cor-
pus encompassing 40 chart types produced by over 50 tools from hun-
dreds of public online sources. Each chart in VISANATOMY is aug-
mented with rich, multi-granular semantic labels including graphical
elements’ types, roles, and bounding boxes, the hierarchical grouping
of elements, the layouts of groups, and visual encodings. We compare
VISANATOMY with related corpora to demonstrate its diversity and
the richness of the semantic labels. The usefulness of VISANATOMY
is evaluated through four applications: semantic inference of SVG el-
ement roles, chart semantic decomposition, chart type classification,
and content navigation for accessibility. Finally, we outline research
challenges and opportunities for future work.

ACKNOWLEDGMENTS

This work was supported by NSF grant IIS-2239130.

REFERENCES

[1] Google Images, the most comprehensive image search on the web., 2023.
https://www.google.com/advanced_image_search. 2

[2] Plotly: the front end for ML and data science models, 2023. https:
//plotly.com/. 3, 7

[3] See it, search it — Bing Visual Search, 2023. https://www.bing.com/
visualsearch. 2

[4] AnyChart. Anychart is a lightweight and robust javascript charting li-
brary, 2025. https://www.anychart.com/. 6

[5] ApexCharts. Apexcharts.js - open source javascript charts for your web-
site, 2024. https://apexcharts.com/. 3

[6] ApexCharts. Angular chart examples samples demo, 2025. https:
//apexcharts.com/angular-chart-demos/. 6

[7] ApexCharts.js. A Stacked Bar Chart. https://apexcharts.com/
javascript-chart-demos/column-charts/stacked/. 8

[8] L. Battle, P. Duan, Z. Miranda, D. Mukusheva, R. Chang, and M. Stone-
braker. Beagle: Automated Extraction and Interpretation of Visualiza-
tions from the Web. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, article no. 594, pp. 594:1–594:8.
ACM, Montreal, 2018. doi: 10.1145/3173574.3174168 2, 3, 5

[9] M. A. Borkin, A. A. Vo, Z. Bylinskii, P. Isola, S. Sunkavalli, A. Oliva, and
H. Pfister. What makes a visualization memorable? IEEE Transactions
on Visualization and Computer Graphics, 19(12):2306–2315, 2013. doi:
10.1109/TVCG.2013.234 5

[10] M. Bostock. bl.ocks.org, 2021. https://bl.ocks.org/. 2
[11] M. Bostock, V. Ogievetsky, and J. Heer. D³ Data-Driven Docu-

ments. IEEE Transactions on Visualization and Computer Graphics,
17(12):2301–2309, 2011. doi: 10.1109/TVCG.2011.185 2, 3, 6

[12] V. S. Bursztyn, J. Hoffswell, E. Koh, and S. Guo. Representing charts as
text for language models: An in-depth study of question answering for
bar charts. In 2024 IEEE Visualization and Visual Analytics (VIS), pp.
266–270, 2024. doi: 10.1109/VIS55277.2024.00061 6

[13] M. Caron, H. Touvron, I. Misra, H. Jegou, J. Mairal, P. Bojanowski, and
A. Joulin. Emerging properties in self-supervised vision transformers. In
2021 IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 9630–9640, 2021. doi: 10.1109/ICCV48922.2021.00951 8

[14] Chartmaker. The chartmaker directory, 2021. http://chartmaker.
visualisingdata.com/. 2

[15] C. Chen, B. Lee, Y. Wang, Y. Chang, and Z. Liu. Mystique: Deconstruct-
ing svg charts for layout reuse. IEEE Transactions on Visualization and
Computer Graphics, 30(1):447–457, 2024. doi: 10.1109/TVCG.2023.
3327354 1, 2, 4, 5, 6, 7

[16] C. Chen and Z. Liu. The State of the Art in Creating Visualization
Corpora for Automated Chart Analysis. Computer Graphics Forum,
42(3):449–470, 2023. doi: 10.1111/cgf.14855 1, 2, 3, 4, 5, 7, 9

[17] J. Chen, M. Ling, R. Li, P. Isenberg, T. Isenberg, M. Sedlmair, T. Möller,
R. S. Laramee, H.-W. Shen, K. Wünsche, and Q. Wang. Vis30k: A
collection of figures and tables from ieee visualization conference pub-
lications. IEEE Transactions on Visualization and Computer Graphics,
27(9):3826–3833, 2021. doi: 10.1109/TVCG.2021.3054916 5

[18] N. Chen, Y. Zhang, J. Xu, K. Ren, and Y. Yang. Viseval: A benchmark for
data visualization in the era of large language models. IEEE Transactions
on Visualization and Computer Graphics, 31(1):1301–1311, 11 pages,
Jan. 2025. doi: 10.1109/TVCG.2024.3456320 5

[19] X. Chen, W. Zeng, Y. Lin, H. M. AI-maneea, J. Roberts, and R. Chang.
Composition and configuration patterns in multiple-view visualiza-
tions. IEEE Transactions on Visualization and Computer Graphics,
27(2):1514–1524, 2021. doi: 10.1109/TVCG.2020.3030338 5

[20] C. Cortes and V. Vapnik. Support-vector networks. Mach. Learn.,
20(3):273–297, 25 pages, Sept. 1995. doi: 10.1023/A:1022627411411
7

[21] W. Cui, J. Wang, H. Huang, Y. Wang, C.-Y. Lin, H. Zhang, and D. Zhang.
A Mixed-Initiative Approach to Reusing Infographic Charts. IEEE Trans-
actions on Visualization and Computer Graphics, 28(1):173–183, 2022.
doi: 10.1109/TVCG.2021.3114856 1, 7

[22] W. Cui, X. Zhang, Y. Wang, H. Huang, B. Chen, L. Fang, H. Zhang, J.-G.
Lou, and D. Zhang. Text-to-viz: Automatic generation of infographics
from proportion-related natural language statements. IEEE Transactions

on Visualization and Computer Graphics, 26(1):906–916, 2019. doi: 10.
1109/TVCG.2019.2934785 1

[23] D3.js. A Geographical Heatmap.
https://observablehq.com/@z-richard/

choropleth-map-of-the-covid-19-cases-in-china. 8
[24] Datylon. Datylon: Design, automate & share beautiful, on-brand reports,

2024. https://www.datylon.com/. 3
[25] K. Davila, S. Setlur, D. Doermann, B. U. Kota, and V. Govindaraju. Chart

mining: A survey of methods for automated chart analysis. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 43(11):3799–
3819, 2020. doi: 10.1109/TPAMI.2020.2992028 1

[26] D. Davis. An Annotated Bar Chart. https://poetrybetweenpain.
deb.is/. 8

[27] D. Deng, Y. Wu, X. Shu, J. Wu, S. Fu, W. Cui, and Y. Wu. VisImages:
A Fine-Grained Expert-Annotated Visualization Dataset . IEEE Trans-
actions on Visualization & Computer Graphics, 29(07):3298–3311, July
2023. doi: 10.1109/TVCG.2022.3155440 2, 5, 7

[28] V. Dibia and Ç. Demiralp. Data2vis: Automatic generation of data visu-
alizations using sequence-to-sequence recurrent neural networks. IEEE
Computer Graphics and Applications, 39(5):33–46, 2019. doi: 10.1109/
MCG.2019.2924636 1

[29] S. Dou, X. Jiang, L. Liu, L. Ying, C. Shan, Y. Shen, X. Dong, Y. Wang,
D. Li, and C. Zhao. Hierarchically recognizing vector graphics and a
new chart-based vector graphics dataset. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(12):7556–7573, 2024. doi: 10.
1109/TPAMI.2024.3394298 5

[30] Ferdio. The data viz project, 2021. https://datavizproject.com/.
2

[31] J. Harper and M. Agrawala. Deconstructing and restyling D3 visualiza-
tions. In Proceedings of the 27th annual ACM symposium on User inter-
face software and technology, pp. 253–262. ACM, Honolulu, 2014. doi:
10.1145/2642918.2647411 7

[32] J. Heer, M. Agrawala, and W. Willett. Generalized selection via inter-
active query relaxation. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’08, 10 pages, p. 959–968.
Association for Computing Machinery, New York, NY, USA, 2008. doi:
10.1145/1357054.1357203 4

[33] Highcharts. A Multi-Line Chart. https://www.highcharts.com/
demo/highcharts/line-ajax. 8

[34] Highcharts. Highcharts: Interactive charting library, 2024. https://
www.highcharts.com/. 3

[35] A. Howard, M. Sandler, B. Chen, W. Wang, L.-C. Chen, M. Tan, G. Chu,
V. Vasudevan, Y. Zhu, R. Pang, H. Adam, and Q. Le. Searching for Mo-
bileNetV3 . In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 1314–1324. IEEE Computer Society, Los Alamitos,
CA, USA, Nov. 2019. doi: 10.1109/ICCV.2019.00140 8

[36] K. Hu, M. A. Bakker, S. Li, T. Kraska, and C. Hidalgo. Vizml: A Machine
Learning Approach to Visualization Recommendation. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems, pp.
1–12, 2019. doi: 10.1145/3290605.3300358 1

[37] K. Hu, S. N. S. Gaikwad, M. Hulsebos, M. A. Bakker, E. Zgraggen, C. Hi-
dalgo, T. Kraska, G. Li, A. Satyanarayan, and C. Demiralp. VizNet: To-
wards A Large-Scale Visualization Learning and Benchmarking Reposi-
tory. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems, pp. 1–12. ACM, Glasgow Scotland Uk, May 2019.
doi: 10.1145/3290605.3300892 9

[38] A. Hurst, A. Lerer, A. P. Goucher, A. Perelman, A. Ramesh, A. Clark,
A. Ostrow, A. Welihinda, A. Hayes, A. Radford, et al. GPT-4o System
Card. arXiv preprint arXiv:2410.21276, 2024. 6

[39] D. Jung, W. Kim, H. Song, J.-I. Hwang, B. Lee, B. Kim, and J. Seo.
Chartsense: Interactive Data Extraction from Chart Images. In Pro-
ceedings of the 2017 CHI Conference on Human Factors in Computing
Systems, 12 pages, pp. 6706–6717. ACM, Denver, 2017. doi: 10.1145/
3025453.3025957 1, 7

[40] S. E. Kahou, V. Michalski, A. Atkinson, Á. Kádár, A. Trischler, and
Y. Bengio. Figureqa: An annotated figure dataset for visual reasoning.
arXiv preprint arXiv:1710.07300, 2017. 9

[41] G. Kazai, J. Kamps, and N. Milic-Frayling. An analysis of human fac-
tors and label accuracy in crowdsourcing relevance judgments. Inf. Retr.,
16(2):138–178, 41 pages, Apr. 2013. doi: 10.1007/s10791-012-9205-0 3

[42] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014. 8

[43] A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing user studies with me-

https://www.google.com/advanced_image_search
https://plotly.com/
https://plotly.com/
https://www.bing.com/visualsearch
https://www.bing.com/visualsearch
https://www.anychart.com/
https://apexcharts.com/
https://apexcharts.com/angular-chart-demos/
https://apexcharts.com/angular-chart-demos/
https://apexcharts.com/javascript-chart-demos/column-charts/stacked/
https://apexcharts.com/javascript-chart-demos/column-charts/stacked/
https://doi.org/10.1145/3173574.3174168
https://doi.org/10.1109/TVCG.2013.234
https://doi.org/10.1109/TVCG.2013.234
https://bl.ocks.org/
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/VIS55277.2024.00061
https://doi.org/10.1109/ICCV48922.2021.00951
http://chartmaker.visualisingdata.com/
http://chartmaker.visualisingdata.com/
https://doi.org/10.1109/TVCG.2023.3327354
https://doi.org/10.1109/TVCG.2023.3327354
https://doi.org/10.1111/cgf.14855
https://doi.org/10.1109/TVCG.2021.3054916
https://doi.org/10.1109/TVCG.2024.3456320
https://doi.org/10.1109/TVCG.2020.3030338
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1109/TVCG.2021.3114856
https://doi.org/10.1109/TVCG.2019.2934785
https://doi.org/10.1109/TVCG.2019.2934785
https://observablehq.com/@z-richard/choropleth-map-of-the-covid-19-cases-in-china
https://observablehq.com/@z-richard/choropleth-map-of-the-covid-19-cases-in-china
https://www.datylon.com/
https://doi.org/10.1109/TPAMI.2020.2992028
https://poetrybetweenpain.deb.is/
https://poetrybetweenpain.deb.is/
https://doi.org/10.1109/TVCG.2022.3155440
https://doi.org/10.1109/MCG.2019.2924636
https://doi.org/10.1109/MCG.2019.2924636
https://doi.org/10.1109/TPAMI.2024.3394298
https://doi.org/10.1109/TPAMI.2024.3394298
https://datavizproject.com/
https://doi.org/10.1145/2642918.2647411
https://doi.org/10.1145/2642918.2647411
https://doi.org/10.1145/1357054.1357203
https://doi.org/10.1145/1357054.1357203
https://www.highcharts.com/demo/highcharts/line-ajax
https://www.highcharts.com/demo/highcharts/line-ajax
https://www.highcharts.com/
https://www.highcharts.com/
https://doi.org/10.1109/ICCV.2019.00140
https://doi.org/10.1145/3290605.3300358
https://doi.org/10.1145/3290605.3300892
https://doi.org/10.1145/3025453.3025957
https://doi.org/10.1145/3025453.3025957
https://doi.org/10.1007/s10791-012-9205-0

chanical turk. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, CHI ’08, 4 pages, p. 453–456. Association
for Computing Machinery, New York, NY, USA, 2008. doi: 10.1145/
1357054.1357127 3

[44] H.-K. Ko, H. Jeon, G. Park, D. H. Kim, N. W. Kim, J. Kim, and J. Seo.
Natural language dataset generation framework for visualizations pow-
ered by large language models. In Proceedings of the CHI Conference on
Human Factors in Computing Systems, CHI ’24, article no. 843, 22 pages.
Association for Computing Machinery, New York, NY, USA, 2024. doi:
10.1145/3613904.3642943 5

[45] Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and
time series, p. 255–258. MIT Press, Cambridge, MA, USA, 1998. 7

[46] H. Li, Y. Wang, A. Wu, H. Wei, and H. Qu. Structure-aware visualization
retrieval. In Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems, CHI ’22, article no. 409, 14 pages. Association
for Computing Machinery, New York, NY, USA, 2022. doi: 10.1145/
3491102.3502048 1, 2, 7

[47] A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng,
C. Zhang, C. Ruan, et al. DeepSeek-V3 Technical Report. arXiv preprint
arXiv:2412.19437, 2024. 6

[48] Z. Liu, C. Chen, and J. Hooker. Manipulable Semantic Components: A
Computational Representation of Data Visualization Scenes. IEEE Trans-
actions on Visualization and Computer Graphics, 31(1):732 – 742, 2025.
doi: 10.1109/TVCG.2024.3456296 2, 3, 4, 6, 9

[49] Z. Liu, C. Chen, F. Morales, and Y. Zhao. Atlas: Grammar-based Pro-
cedural Generation of Data Visualizations. In 2021 IEEE Visualization
Conference (VIS), pp. 171–175. IEEE, New Orleans, 2021. doi: 10.1109/
VIS49827.2021.9623315 2, 3

[50] S. Madan, Z. Bylinskii, M. Tancik, A. Recasens, K. Zhong, S. Al-
sheikh, H. Pfister, A. Oliva, and F. Durand. Synthetically trained icon
proposals for parsing and summarizing infographics. arXiv preprint
arXiv:1807.10441, 2018. 5

[51] A. Mahinpei, Z. Kostic, and C. Tanner. Linecap: Line charts for data
visualization captioning models. In 2022 IEEE Visualization and Visual
Analytics (VIS), pp. 35–39. IEEE, 2022. doi: 10.1109/VIS54862.2022.
00016 9

[52] Mascot.js. A Connected Dot Plot. https://mascot-vis.github.io/
gallery#DumbbellChart. 8

[53] D. Masson, S. Malacria, D. Vogel, E. Lank, and G. Casiez. ChartDetec-
tive: Easy and Accurate Interactive Data Extraction from Complex Vector
Charts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems, number 147, article no. 147, 17 pages. ACM, Ham-
burg, 2023. doi: 10.1145/3544548.3581113 2, 9

[54] Matplotlib. Matplotlib — visualization with python, 2025. https://
matplotlib.org/. 6

[55] A. M. McNutt. No Grammar to Rule Them All: A Survey of JSON-
style DSLs for Visualization. IEEE Transactions on Visualization and
Computer Graphics, 29(1):160–170, 2023. doi: 10.1109/TVCG.2022.
3209460 2

[56] Microsoft. Azure AI Vision with OCR and AI - Microsoft Azure.
https://azure.microsoft.com/en-us/products/ai-services/

ai-vision. 2
[57] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Ter-

zopoulos. Image segmentation using deep learning: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(7):3523–
3542, 2022. doi: 10.1109/TPAMI.2021.3059968 2

[58] T. Munzner. Visualization analysis and design. CRC press, 2014. 2
[59] NIVO. Home — nivo, 2024. https://nivo.rocks/. 3, 6
[60] Observable. Explore, analyze, and explain data as a team., 2021. https:

//observablehq.com/. 2
[61] J. Poco and J. Heer. Reverse-Engineering Visualizations: Recover-

ing Visual Encodings from Chart Images. Computer Graphics Forum,
36(3):353–363, 2017. doi: 10.1111/cgf.13193 1, 2, 5, 6, 7

[62] D. Ren, B. Lee, and M. Brehmer. Charticulator: Interactive Construc-
tion of Bespoke Chart Layouts. IEEE Transactions on Visualization and
Computer Graphics, 25(1):789–799, 2018. doi: 10.1109/TVCG.2018.
2865158 4, 9

[63] S. Ribecca. The data visualisation catalogue, 2021. https://

datavizcatalogue.com/about.html. 2
[64] A. Satyanarayan, B. Lee, D. Ren, J. Heer, J. Stasko, J. Thompson,

M. Brehmer, and Z. Liu. Critical Reflections on Visualization Authoring
Systems. IEEE Transactions on Visualization and Computer Graphics,
26(1):461–471, 2019. doi: 10.1109/TVCG.2019.2934281 2, 3

[65] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite:
A Grammar of Interactive Graphics. IEEE Transactions on Visualiza-
tion and Computer Graphics, 23(1):341–350, 2016. doi: 10.1109/TVCG
.2016.2599030 2, 3, 9

[66] M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and J. Heer.
Revision: Automated Classification, Analysis and Redesign of Chart Im-
ages. In Proceedings of the 24th annual ACM symposium on User inter-
face software and technology, pp. 393–402. ACM, Santa Barbara, 2011.
doi: 10.1145/2047196.2047247 1, 2, 6, 7

[67] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini.
The graph neural network model. IEEE Transactions on Neural Net-
works, 20(1):61–80, 2009. doi: 10.1109/TNN.2008.2005605 7

[68] Semiotic. Semiotic — a data visualization framework for react, 2025.
https://semiotic.nteract.io/. 6

[69] L. S. Snyder and J. Heer. DIVI: Dynamically Interactive Visualization.
IEEE Transactions on Visualization and Computer Graphics, 30(1):403
– 413, 2024. Publisher: IEEE. doi: 10.1109/TVCG.2023.3327172 2, 3

[70] Spotfire. Spotfire: Transforming Data into Real-Time Insights and Ac-
tionable Decisions. https://www.spotfire.com/. 2

[71] B. J. Tang, A. Boggust, and A. Satyanarayan. VisText: A Benchmark
for Semantically Rich Chart Captioning. In The Annual Meeting of the
Association for Computational Linguistics (ACL), 2023. 5

[72] M. USA. Award-winning fast, flexible c .net chart control,
2025. https://developer.mescius.com/componentone/docs/

win/online-flexchart/overview.html. 6
[73] W3C (2019). WAI Web Accessibility Tutorials: Complex Images., 2019.

https://www.w3.org/WAI/tutorials/images/complex/. 8
[74] Z. Wang, J. Hsu, X. Wang, K.-H. Huang, M. Li, J. Wu, and H. Ji. Text-

based reasoning about vector graphics. arXiv preprint arXiv:2404.06479,
2024. 6

[75] L. Wilkinson. ggplot2: elegant graphics for data analysis by wickham,
h., 2011. 3

[76] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How Powerful Are Graph
Neural Networks? In International Conference on Learning Representa-
tions, 2019. 6, 7

[77] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim. Graph Trans-
former Networks. Advances in Neural Information Processing Systems,
32, 2019. 8

[78] K. T. Zinat, J. Yang, A. Gandhi, N. Mitra, and Z. Liu. A comparative eval-
uation of visual summarization techniques for event sequences. Computer
Graphics Forum, 42(3):173–185, 2023. doi: 10.1111/cgf.14821 3

[79] J. Zong, C. Lee, A. Lundgard, J. Jang, D. Hajas, and A. Satyanarayan.
Rich Screen Reader Experiences for Accessible Data Visualization. Com-
puter Graphics Forum (Proc. EuroVis), 2022. doi: 10.1111/cgf.14519 1,
6, 8

https://doi.org/10.1145/1357054.1357127
https://doi.org/10.1145/1357054.1357127
https://doi.org/10.1145/3613904.3642943
https://doi.org/10.1145/3613904.3642943
https://doi.org/10.1145/3491102.3502048
https://doi.org/10.1145/3491102.3502048
https://doi.org/10.1109/TVCG.2024.3456296
https://doi.org/10.1109/VIS49827.2021.9623315
https://doi.org/10.1109/VIS49827.2021.9623315
https://doi.org/10.1109/VIS54862.2022.00016
https://doi.org/10.1109/VIS54862.2022.00016
https://mascot-vis.github.io/gallery#DumbbellChart
https://mascot-vis.github.io/gallery#DumbbellChart
https://doi.org/10.1145/3544548.3581113
https://matplotlib.org/
https://matplotlib.org/
https://doi.org/10.1109/TVCG.2022.3209460
https://doi.org/10.1109/TVCG.2022.3209460
https://azure.microsoft.com/en-us/products/ai-services/ai-vision
https://azure.microsoft.com/en-us/products/ai-services/ai-vision
https://doi.org/10.1109/TPAMI.2021.3059968
https://nivo.rocks/
https://observablehq.com/
https://observablehq.com/
https://doi.org/10.1111/cgf.13193
https://doi.org/10.1109/TVCG.2018.2865158
https://doi.org/10.1109/TVCG.2018.2865158
https://datavizcatalogue.com/about.html
https://datavizcatalogue.com/about.html
https://doi.org/10.1109/TVCG.2019.2934281
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1145/2047196.2047247
https://doi.org/10.1109/TNN.2008.2005605
https://semiotic.nteract.io/
https://doi.org/10.1109/TVCG.2023.3327172
https://www.spotfire.com/
https://developer.mescius.com/componentone/docs/win/online-flexchart/overview.html
https://developer.mescius.com/componentone/docs/win/online-flexchart/overview.html
https://www.w3.org/WAI/tutorials/images/complex/
https://doi.org/10.1111/cgf.14821
https://doi.org/10.1111/cgf.14519

	Introduction
	VisAnatomy: Chart Collection
	Manual Chart Collection
	VisAnatomy Promotes Chart Diversity

	VisAnatomy: Multilevel Fine-grained Semantic Labels
	Fine-grained Labels of Multilevel Scene Components
	Labeling with A Semi-Automated Tool
	Iterative Annotation and Quality Control
	Comparing VisAnatomy with Related Corpora

	Use Cases
	Semantic Role Inference with LLMs
	Chart Layout Deconstruction
	Chart Type Classification
	Content Navigation for Accessibility

	Discussion and Future Work
	Conclusion

