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Ploceus: Modeling, visualizing, and
analyzing tabular data as networks

Zhicheng Liu1, Shamkant B Navathe2 and John T Stasko2

Abstract
Tabular data are pervasive. Although tables often describe multivariate data without explicit definitions of a
network, it may be advantageous to explore the data by modeling it as a graph or network for analysis. Even
when a given table design specifies a network structure, analysts may want to look at multiple networks from
different perspectives, at different levels of abstraction, and with different edge semantics. We present a sys-
tem called Ploceus that offers a general approach for performing multidimensional and multilevel network–
based visual analysis on multivariate tabular data. Powered by an underlying relational algebraic framework,
Ploceus supports flexible construction and transformation of networks through a direct manipulation inter-
face and integrates dynamic network manipulation with visual exploration through immediate feedback
mechanisms. We report our findings on the learnability and usability of Ploceus and propose a model of user
actions in visualization construction using Ploceus.
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Introduction

Network visualizations, often in the form of node-link

diagrams, are an effective means to understand the pat-

terns of interaction between entities, to discover entities

with interesting roles, and to identify inherent groups

or clusters of entities. Many existing approaches to net-

work visualization and analysis assume a given graph.

During an analysis process, however, selecting, filtering,

clustering, or computing metrics over a static network

is not always enough. Analysts may want to construct

new networks and transform existing ones to explore

the data from different perspectives and at different lev-

els of abstraction.

The goal of our research is to provide a general

approach for performing multidimensional and multi-

level network–based visual analysis. We choose tabular

data as the input data model considering the domi-

nance of spreadsheets and relational databases in cur-

rent data management practices. As we discuss in the

following, tabular data may or may not contain explicit

specification of nodes and edges in a graph, and its

multivariate nature implies the need for dynamic net-

work modeling for greater analytic power.

Forms of tabular data

Tabular data come in many forms, each unique in its

schematic and semantic structures depending on the

technology used and the data owner’s goal. The term

‘‘tabular data’’ is thus fairly broad and can be inter-

preted as either multivariate data or attribute relationship

graphs. We give examples of different types of tabular

data in this section and will base our discussion on

these examples throughout the rest of the article.
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Single tables are represented as spreadsheets and

comma-separated value (csv) files. For example,

Table 1 shows visits to the White House. For each

visit, it records the last and first name of the person

arranging the visit (LName, FName), the type of visit

(Type), the date (Date) and location (Loc) of visit, the

size of the visiting group (Size), and the visitee’s name

(Visitee). Such tabular data are essentially multivariate

data where rows represent entities or facts and col-

umns represent entity attributes or reference to other

entities. In multivariate data, explicit definition of a

graph structure is typically absent.

Multiple linked tables are often stored in relational

databases, although the same tables can also be

described in spreadsheets. In a relational database, the

entity–relationship (ER) model1 typically underlies

database design. Each row in a table represents a fact

that corresponds to a real-world entity or relationship.

For example, Table 2(a) represents facts about employ-

ees in a company, and Table 2(b) represents facts about

departments in the same company. The two tables are

linked by a one-to-many DEPARTMENT� EMPLOYEE

relationship type. That is, one department can have

multiple employees, but one employee can work for

only one department. One-to-many relationships are

typically captured by foreign keys in a relational

database.2 In this case, Dpt in the EMPLOYEE table is a

foreign key, referencing the DEPARTMENT table.

Another type of relationship in the ER model is the

many-to-many relationship, and it is captured by a sep-

arate relationship table.2 For example, Table 3(a) rep-

resents selected facts about research grants awarded

by the National Science Foundation (NSF) in the

Information & Intelligent Systems (IIS) division, and

Table 3(b) represents facts about researchers. The two

tables are linked by Table 3(c), which represents a

many-to-many ‘‘work-on’’ relationship. That is, one

researcher can receive multiple grants, and one grant

can also involve multiple researchers.

These tabular data in multiple linked tables are

essentially attributed graphs. Table 2 describes connec-

tions between employee and department entities.

Similarly, Table 3 is a graph specifying the connection

between two types of entities, researcher and grant,

each with its own attributes.

An online analytical processing (OLAP) database,

unlike spreadsheets and relational databases, is not

built for low-level transactional operations such as

insertion and update, but for retrieval, querying, and

analytical purposes. It uses data cubes for better perfor-

mance in operations such as slice/dice and roll-up/drill-

down. The analytical power of OLAP, however, is not

Table 1. A table of sample visitor information to the White House.

ID LName FName Type Date Loc Size Visitee

1 Dodd Chris VA 25 Jun 09 WH 2018 POTUS
2 Smith John VA 26 Jun 09 WH 237 Office visitors
3 Smith John AL 26 Jun 09 OEOB 144 Amanda Kepko
4 Hirani Amyn VA 30 Jun 09 WH 184 Office visitors
5 Keehan Carol VA 30 Jun 09 WH 8 Kristin Sheehy
6 Keehan Carol VA 8 Jul 09 OEOB 26 Daniella Leger

OEOB: Old Executive Office Building; VA: Visitor Access; AL: Agency Liaison; WH: White House; OEOB: Old Executive Office Building;
POTUS: President of the US.

Table 2. Two tables describing employees and the departments they work for.

(a) Employee

ID FName LName Bdate Dpt

1 John Smith 10 Jan 65 2
2 Franklin Wong 9 Apr 52 3
3 Jennifer Wallace 23 Oct 70 3
4 Ahmad Jabbar 2 Nov 45 1

(b) Department

ID Name City State Latitude Longitude

1 Headquarters Los Angeles CA 34.05 2118.24
2 Administration San Jose CA 37.34 2121.89
3 Research Houston TX 29.76 295.36
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necessarily suitable for network-based analysis because

it focuses only on inherent relationships between entity

attributes and assumes different entities are mutually

independent.3 As a result, the OLAP framework is not

directly relevant for our purpose, and in this article, we

focus on spreadsheets and databases, which provide a

basis for an alternative network-centric framework.

Analytical gap and semantic distance

For visualization designers and analysts, spreadsheets

and databases naturally become the infrastructure

upon which higher level visual analysis is accom-

plished. As discussed in the previous section, multi-

variate data in the form of single tables do not contain

explicit network semantics; even when multiple tables

are used to describe a graph, analysts’ own notions of a

meaningful network may render different graph struc-

tures. First, the concept of an entity is often multilevel

and nested: an attribute of an entity may be treated as

an entity in its own right. For example, in Table 3(a),

each row represents a grant entity with its own attri-

butes such as title and program manager. A program

manager can be in turn treated as an entity. In fact, it

is often difficult to determine whether something is an

entity or an attribute in data schema design.4 Second,

the same two entities can be connected via different

semantics. In Table 1, for example, two people can be

connected if they visited the same location, have the

same last name, or started their visits on the same day.

The multivariate nature of tabular datasets thus

implies opportunities for asking interesting questions

that can be answered with network visualizations, and it

is worthwhile to examine the nature of such questions

more closely. Given the dataset in Table 3, for example,

a grant applicant may want to understand the hidden

dynamics, if any, in the process of awarding grants to

choose an appropriate application strategy. NSF officials

will want to understand the impact of the IIS program

on the awardee social networks and on the creation and

diffusion of intellectual property to evaluate funding pol-

icy. Many questions can thus be asked, for instance,

� Q1: Is there a strong affiliation between program

managers and research institutions? That is, do

certain program managers tend to give awards to a

few selected institutions only?
� Q2: From which organizations do researchers tend

to have more cross-institution collaborations?

One possible way to answer Q1 is to construct a

network visualization (Figure 1(a)) where an

Table 3. Tables describing researchers and the grants they receive.

(a) Grant

GID Title Program Program Manager Amount

1 Data mining of digital
behavior

Statistics Sylvia Spengler 2,241,750

2 Real-time capture,
management and
reconstruction of
spatiotemporal events

Information
Technology
Research

Maria Zemankova 430,000

3 Statistical data mining
of time-dependent data
with applications in
geoscience and biology

ITR for National
Priorities

Sylvia Spengler 566,644

(b) Person

PID Name Org

1 Padhraic Smyth University of California Irvine
2 Sharad Mehrotra University of California Irvine

(c) Work-on

Person Grant Role

1 1 PI
2 1 CoPI
2 2 PI
1 3 PI

ITR: Information Technology Research; PI: Principle Investigator; CoPI: co-Principle Investigator.
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organization and a program manager are linked if the

manager has awarded at least one grant to researchers

in that organization. We can define the edge weight to

be the total grant amount as shown in Figure 1 or to

be the number of grants awarded. Analysts can provide

initial answers to Q1 by inspecting the overall connec-

tivity of the network. If the network consists of multi-

ple small subnetworks that are disconnected from each

other, there is evidence that a strong affiliation does

exist. It is also likely that there is no disconnection

within the network, but certain organizations or man-

agers occupy more central roles. Statistical measures

will enhance visual inspection to provide a more pre-

cise assessment.

Similarly, to answer Q2, we can create a network

visualization where two organizations are connected by

an edge if there is at least one collaboration between any

researchers from these two organizations. Figure 1(b)

shows this network semantics, where the edge weight is

based on the frequency of collaboration. Applying an

appropriate layout algorithm to this network visualiza-

tion and using statistical measures such as betweenness

centrality will likely reveal important organizations that

are ‘‘gatekeepers’’ connecting different subgraphs.

These questions have two major characteristics.

First, they cannot be answered satisfactorily by simple

‘‘yes’’ or ‘‘no’’ or precise quantification. Analysts can

define metrics to measure ‘‘affiliation strength,’’ for

example, in the case of Q1, but such metrics are only

meaningful at the level of specific manager–institution

pairs. Network visualizations are useful to show global

structures in the network. Second, these questions are

semantically rich and context dependent and cannot be

described abstractly or captured a priori because they

usually only emerge during the process of exploration.

Amar and Stasko5 considered answering such ques-

tions as performing high-level analysis tasks, which can

be contrasted with low-level tasks6,7 that are usually

topology based or attribute based. Topology-based

tasks include finding neighbors, counting degree, find-

ing shortest paths, and identifying clusters; attribute-

based tasks include finding nodes with specific attri-

butes or finding nodes connected by particular type of

edges. Many of these low-level tasks are well-defined

questions with clear-cut answers, and they can often

be effectively answered using search or database

queries without much visual representation.

Supporting only low-level tasks creates analytic gaps

in addressing real analytic and sense-making goals. Many

high-level tasks require analysts to go beyond manipulat-

ing a static network and to actively construct and simu-

late a model.8 Illustrations of analysts’ desired model

based on their analytical questions are given in Figure

1(a) and (b). To effectively support model-based reason-

ing, analysts must be able to quickly choose the relevant

entities and relationships for model construction.

The model will be subject to constant refinement

and revision, where new variables and relationships

are introduced and old ones transformed or discarded.

Dynamic articulation of fluid network semantics is

thus necessary, and the multivariate nature of many

tabular datasets provides a fertile playground for per-

forming this kind of model-based reasoning.

Objective and organization

With these considerations in mind, we present Ploceus

(Ploceus is a kind of weaver bird that can build sophis-

ticated nests), a system designed to support flexible

network–based visual analysis of tabular data. Our

focus is not on representation and interaction tech-

niques for visually analyzing a given network; a num-

ber of commercial and research systems have been

designed for this purpose.9–15 Rather, we aim to

address flexible and rapid construction and manipula-

tion of networks from tabular data. The power of

Ploceus is based upon a formal framework that sys-

tematically specifies operators for network construc-

tion and transformation and the implementation of

these operators in relational algebra. A direct manipu-

lation interface is coupled with the formalism to help

analysts articulate the desired network semantics.

This article is an expanded and updated version of

a paper presented at the VAST 2011 Conference.16 In

this version, we present research findings on additional

issues related to network-based visual analysis in tabu-

lar data. More specifically, section ‘‘Visual encoding’’

explores automatic visual encoding of networks mod-

eled from data tables. Sections ‘‘Extending to one-

mode networks’’ and ‘‘Extending to one-mode graphs’’

Figure 1. Visual models for answering questions on the
NSF dataset. (a): a sample network where a program
manager is connected to an organization if the manager
has given grants to researchers from the organization;
edge weight indicates amount of grants, (b): a sample
network where an organization is connected to another
organization if they have received grants together; edge
weight indicates number of grants.
NSF: National Science Foundation.
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extend the scope of our formal framework and the sys-

tem to support the construction of one-mode net-

works from reflexive relational tables. Section ‘‘User

evaluation’’ reports our findings on the learnability

and usability of Ploceus from a qualitative user study.

We identify potential roadblocks in network modeling

and propose a model of user interaction with Ploceus.

Related work

Visualizing multidimensional data

Systems such as DEVise,17 Table Lens,18 FOCUS,19

InfoZoom,20 Polaris,21 and Tableau22 visualize tabular

data in the form of line charts, bar charts, scatterplots,

or space-filling cells for analyzing distribution pattern

and frequency aggregation. None of these systems pays

special attention to the potential of imposing user-

defined relationships between attribute values in the

form of networks. Our motivation behind designing

Ploceus does resonate with the approaches taken by

Polaris and Tableau, which advocate the need for ana-

lysts to rapidly change the data they are viewing and

how the data are visualized, as well as the need to inte-

grate data transformation and visual abstraction in a

seamless process.

Jigsaw23 builds the semantics of relationships into

the system design based on a simple assumption:

Entities are identified purely lexically, and entities

appearing in the same documents are connected. This

approach, originally designed for unstructured text

documents, can be extended to tabular data such as

spreadsheets: one row in a table is equivalent to the

notion of a document. The co-occurrence-based defi-

nition allows flexible explorations of entity relation-

ships without having to explicitly specify the nodes and

edges, but since the fundamental connection model is

centered around documents/rows, the connections

between table columns are less direct. Jigsaw also has

limited data transformation support due to its indiscri-

mination between nominal and quantitative entities.

Network visualization and analysis

A number of systems in the form of toolkits24,25 or

executables9–12,15,26,27 are available for analyzing a

given graph. These systems vary in features and pro-

vide visualizations, computational metrics, or both.

NodeTrix14 explores how these different network

representations can be integrated for the same underly-

ing graph data. ManyNets28 looks at visually exploring

multiple networks. PivotGraph29 provides attribute-

based transformation of multivariate graphs. Creating

and transforming network semantics from data tables

are not the main focus of these systems.

NodeXL13 integrates with Microsoft Excel to

enable users to easily import, transform, visualize, and

analyze network data. NodeXL stores network data in

multiple sheets representing nodes and edges, and

users likely will need to be Excel experts to be able to

transform the data.

Attribute relationship graphs

Ploceus focuses on extracting trees and graphs from

data tables, and variants of this idea have been

explored in prior study. The need for retrieving and

publishing selected information on the web leads to

work that models databases as virtual graphs30 and

provides Extensible Markup Language (XML) docu-

ment interfaces of relational data for web applica-

tions.31 The Grammar of Graphics discusses an

algebraic framework for mapping tables to directed

trees.32 Weaver proposed a data transformation pipe-

line for attribute relationship graphs33 and is perhaps

the closest to our algebraic framework presented in

section ‘‘Computing connections.’’

A number of systems appear to be close to Ploceus

in terms of design goal and functionality, including

CineGraph demonstrating the attribute relationship

graphs approach,33 two Commercial systems

TouchGraph Navigator34 and Centrifuge,35 and the

Orion system.36 Weaver33 distinguishes between

attributed graphs (where an object is connected to its

attributes) and attribute relationship graphs (where

attributes are connected based on occurrence). This

notion of attribute relationship graph lays the founda-

tion of our study. Weaver’s Cinegraph system supports

many network modeling operations such as deriving

attributes and slicing and integrates the generated net-

work with cross-filtered views.37 TouchGraph

Navigator34 and Centrifuge35 provide interfaces for

creating attribute relationship graphs from data tables.

The Orion system,36 published concurrently with our

VAST paper, also supports the construction and trans-

formation of network data.

While Ploceus is not the first system that investi-

gates the connection between data tables and graphs,

we distinguish our study from related systems in two

ways. First, we offer a comprehensive construction

and transformation framework that integrates diverse

operations in a flexible yet systematic manner (section

‘‘Operations’’ describes these operations in detail).

Table 4 summarizes the operations provided by

Ploceus and the related systems. The same operation

may be named differently in different systems, and we

provide the terms used by these systems whenever

possible. Due to the inaccessibility of the commercial

software TouchGraph Navigator,34 we cannot do a

comprehensive assessment of its features and thus
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omit it from the comparison. As is evident from the

table, all the systems provide support for basic opera-

tions such as creating nodes and connections. Adding

node attribute, pivoting, projecting, and proximity

grouping are absent in one or more of the other sys-

tems. Due to different interface designs, sometimes,

there is no direct one-to-one mapping between the

operations in our framework and those in other

systems, and we indicate such situations as ‘‘*’’ in

Table 4. For example, in Orion, there is no ‘‘project’’

operation, but users can create one-mode networks by

‘‘promoting’’ a column to a table and connect the col-

umn to itself.36 Similarly, in our framework, there is

no explicit ‘‘filter by value’’ operation, but analysts can

identify specific node values through the search func-

tion provided at the interface level.

Second, we take a human-centered perspective in

interface design. While systems such as Orion and

CineGraph provide similar modeling operations, their

interfaces are significantly different from those of

Ploceus. In our design considerations, we aim to

expose each network modeling operation as a concep-

tually meaningful unit to the users and map each oper-

ation to an action or an interface element. In

particular, we design and implement a network

schema view based on the notion of ‘‘visualization

schemas’’38 to enable analysts to construct a network

by combining the modeling operations without the

need for programming.

Ploceus: overview

Ploceus provides a direct manipulation interface for

fast construction and transformation of networks and

shows immediate visual feedback on the network being

created. Model construction and visual exploration are

integrated. Ploceus contains three major views: a data

management view on the top left, a network schema

view on the bottom left, and a network view on the

right (Figure 2). The data management view shows

information about the columns in each table in a

dataset; the network schema view is a sandbox-like

environment where users can construct and manipu-

late networks at a conceptual level; the network view

shows the corresponding network visualization and

updates whenever the network schema is modified.

Operations

Ploceus currently supports the following types of oper-

ations. We describe these operations at a functional

level in this section and discuss the precise mechan-

isms of accomplishing these operations in section

‘‘Computing connections.’’

� Create nodes. Transform the values in one or more

columns into node labels. For example, we can

construct a set of nodes representing the people

visiting the White House from all the rows in

Table 1 and can create the labels of the nodes from

the LName and FName columns. This results in

four nodes: ‘‘Dodd, Chris,’’ ‘‘Smith, John,’’

‘‘Hirani, Amyn,’’ and ‘‘Keehan, Carol.’’
� Add attributes. Transform the values in one or more

columns as attributes of existing nodes. For exam-

ple, we can add an attribute AccessType to the peo-

ple nodes constructed from LName, FName earlier.

The node ‘‘Dodd, Chris’’ will have the value ‘‘VA’’

for the AccessType attribute. Ploceus also supports

adding columns as attributes from a different table.

For example, we can add Role from Table 3(c) as

an attribute for the Name nodes constructed from

Table 3(b). Ploceus only allows a node to have one

value for any particular attribute, so there will be

two ‘‘Sharad Mehrotra’’ nodes in this case, one hav-

ing a PI role and the other having a CoPI role.
� Create connections. Create edges between existing

nodes. For example, we can connect LName, FName

nodes and Loc nodes from Table 2 to see the visiting

patterns by the visitors to the various locations. We

can also connect nodes created from different tables,

for example, ProgramManager nodes from Table 3(a)

Table 4. A comparison between different systems in terms of the network modeling operations provided.

Ploceus Centrifuge ARG Orion

Create nodes U U U (group) U (promote)
Add attributes U 3 3 3
Create connections U U U (clique) U (link)
Assign weights U 3 U (weight) U (weight)
Project U 3 3 *
Aggregate—pivoting U 3 3 U (roll-up)
Aggregate—binning U U 3 3
Aggregate—proximity grouping U 3 3 3
Slice ’n dice U U U (slice) U (split)
Filter by value * 3 U (drill) U (filter)
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and Org nodes from Table 3(b). When multiple

tables are involved, Ploceus tries to determine how

the tables should be joined by analyzing the foreign

key constraints between the tables using the Dijkstra

shortest-path algorithm39 (section ‘‘Higher-order

graphs: transformation’’ provides technical details on

this issue). In this case, the two tables are joined

through Table 3(c). Ploceus computes whether there

should be an edge between any two nodes as well as

assigns a weight to that edge. When multiple ways of

joining tables are possible, users can specify the join

condition through a dialog.
� Assign weights. Assign numerical weights to edges.

Ploceus by default assigns a weight to each edge cre-

ated, indicating the frequency of co-occurrence

between the nodes in the data (sections ‘‘Edge seman-

tics and construction strategies’’ and ‘‘Computing

connections’’ discuss edge weights in greater depth).

For example, if we connect LName, FName nodes

and Loc nodes from Table 1, by default, the edge

between ‘‘Dodd, Chris’’ and WH has a weight of 1,

indicating this person has visited the White House

once in this dataset. We may instead want to repre-

sent the connection strength by the number of people

he has brought on his visits and assign the column

Size as the edge weight. The edge between

‘‘Dodd, Chris’’ and WH will have a weight of 2018.

Only a single column can be assigned as edge weight,

and that column must be quantitative.

� Project. Connect two nodes if they both are con-

nected to the same node of a different type.

Projection is a commonly used technique to

reduce modalities of a network for analysis.40 In a

two-mode (i.e. there are two types of nodes)

LName, FName—Loc network, for example, if

‘‘Dodd, Chris’’ is connected to ‘‘WH’’ (i.e. Chris

Dodd visited the White House), and if

‘‘Keehan,Carol’’ is connected to ‘‘WH’’ also, after

projecting LName, FName nodes on Loc nodes,

‘‘Dodd, Chris’’ and ‘‘Keehan, Carol’’ are connected.

Figure 3(a) shows this process. The weight of

edges after projection reflects the unique number

of Loc nodes being projected.
� Aggregate. Group multiple nodes and treat them as

one node. Ploceus automatically aggregates nodes

with identical labels if no attributes are specified

for these nodes and aggregates nodes with identi-

cal labels and values if attributes are specified for

the nodes. As a result, we have four distinct

LName, FName nodes from Table 1, while there are

actually six rows in the table.

Other types of aggregation include, but are not lim-

ited to, the following:

� Pivoting. PivotGraph29 terms this operation roll-

up. Given LName, FName nodes with the attri-

bute AccessType, we can aggregate people nodes

Figure 2. Ploceus system interface with a data management view on the top left, a network schema view on the bottom
left, and a network visualization view on the right.
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when they share the same AccessType. The

pivoting process is visualized in Figure 3(b).

The resulting graph shows the locations that are

typically visited for different types of visits.
� Binning. For nodes whose labels or attributes

are derived from quantitative columns, value-

based aggregation is possible. One type of

value-based aggregation is binning: we divide

the range from the minimum to the maximum

attribute values into bins. For example, we can

categorize Amount nodes created from Table

3(a) into three bins: ‘‘small’’ if Amount4500 K,

‘‘medium’’ if 500 K \ Amount41200 K, and

‘‘large’’ if Amount . 1200 K.
� Proximity grouping. Group nodes in a pairwise

manner if they have values close to each other.

For example, from Table 2(b), we can create

City nodes with attributes Latitude and

Longitude. We can then aggregate every pair of

City nodes into one for which the distance

between them, computed from the latitude

and longitude information, is within 500 miles.

This operation is combinatorial: if there are

four cities, and everyone is within 500 miles of

each of the other three, proximity grouping will

produce
P(4�1)

k= 1 k=6 nodes. Proximity group-

ing is useful when combined with projection,

so that we can, for example, create a network

of employees whose workplaces are within 500

miles to each other (to do this, connect

employee names with cities, aggregate cities,

and then project employees on cities).
� Slice ’n dice. Divide a network into subnetworks

based on selected columns. For example, given

that we have constructed an LName, FName—

Visitee network from Table 1, we may want to

see how the visiting pattern is related to the loca-

tions of visits by dividing the network using Loc

slices. We will then have two subnetworks, one

representing the visiting patterns at the White

House (‘‘WH’’) and the other at the Old Executive

Office Building (‘‘OEOB’’). Slice ’n dice thus

enables analysts to create and organize meaningful

snapshots of a big network based on different per-

spectives. The values in columns used for slicing

and dicing are either categorical or can be categor-

ized. When hierarchical categories exist, analysts

can slice and dice at multiple granularities, for

example, for a date column: day! week! month

! quarter! year.

We try to be comprehensive in choosing the relevant

operations to be included based on three criteria: (1)

The operation is indispensable for creating a basic net-

work, (2) earlier related work shows the utility of the

operation, and (3) the operation is considered useful

based on our own experience in performing network-

based visual analysis. Section ‘‘Expressive power’’

explores the issue of expressive power offered by these

operations. In addition to these higher level operations

for creating and transforming networks from data

tables, Ploceus supports interaction with individual

nodes such as selecting, filtering, moving, hiding,

showing, and expanding (showing neighbors of a

node); interaction with the visualization in the form of

zooming, panning, adding new visualizations, and

deleting existing visualizations; applying various net-

work layout algorithms; and analytical measures such

as node degree, shortest path, betweenness centrality,

and closeness centrality. These features, though not

the main focus of our research, are essential for inte-

gration with the above-mentioned operations for more

complete user experience in performing data transfor-

mation and visual exploration.

Design of direct manipulation interface

In designing Ploceus, we wanted to make the interface

accessible for users who do not necessarily possess

programming skills. To achieve this goal, it is desirable

to reduce articulatory distance, that is, assuming the

analysts want to perform some operations, what is an

intuitive way for them to communicate the intent to

the system.

One possible design is to integrate a visual interface

with a scripting interface as done in GUESS12—the

manipulation of graphs is in the form of commands.

The advantage of this approach is that script languages

are precise, expressive, and concise; the disadvantage

of this approach is that analysts must understand basic

programming concepts.

Figure 3. Project and pivot operations: (a) the visitor
nodes do not have attributes and (b) the visitor nodes have
attribute ‘‘Type’’ (with values ‘‘AL’’ and ‘‘VA’’) from the
original data table.
OEOB: Old Executive Office Building.
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Another design alternative is programming by

demonstration (PBD).41 PBD typically uses a direct

manipulation interface. For example, to create con-

nections between LName, FName nodes and Loc nodes

constructed from Table 1, assuming that we already

have a visual representation of the existing nodes, we

can use a click–drag–drop mouse gesture to connect a

visitor node (e.g. ‘‘Dodd, Chris’’) and a location node

(e.g. ‘‘WH’’). After we have performed similar gestures

two or three times, the system will figure out that our

intention is to connect LName, FName nodes and Loc

nodes and will perform the same operation automati-

cally on the rest of the nodes.

PBD arguably shortens articulatory distance when

it works on a direct manipulation interface. As shown

in the create-connection example, users perform the

exemplary operation at the level of individual data

items, and the system generalizes from the user inter-

action to a high level by connecting different types of

nodes. This bottom-up design approach has some

shortcomings for network modeling. Analysts need to

know if an edge indeed exists between two specific

nodes, and thus, they need to access a low-level repre-

sentation of the raw data and understand the mechan-

ism of edge computation.

Our final design decision is to adopt a direct manip-

ulation approach akin to that of Polaris,21 Tableau,22

and the visualization schemas approach.38 Analysts

directly interact with high-level conceptual representa-

tions of the relational data schema and indicate inten-

tion by manipulating these representations.

To create nodes, analysts drag and drop selected

columns from the data management view to an empty

area in the network schema view (Figure 2). Each

drag-and-drop action creates a type of node, and the

system assigns a color to that type. Dragging and drop-

ping columns on top of an existing node type add those

columns as an attribute to the node type (Figure 4(a)).

Given two types of nodes, analysts create connec-

tions between them by clicking on one type of nodes

and dragging the mouse to the other type of nodes in

the network schema view (Figure 4(b)). This action

draws an edge between the two that takes effect when

the mouse button is released. To designate a quantita-

tive column as edge weights, analysts drag and drop

the column over the edge representation in the net-

work schema view. Ploceus supports slicing and dicing

for up to two dimensions, designated as the horizontal

and vertical axes in the visualization. Analysts specify

the orientation of the slices (horizontal or vertical)

by dropping columns to the appropriate shelf

(Figure 4(c)).

Analysts specify aggregation and projection, two

transformative operations on existing networks, using

Figure 4. Direct manipulation interfaces for various operations: (a) add attributes, (b) create connections, and (c) slice ’n
dice.
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dialog interaction rather than drag and drop. We

make this design choice considering the fact that it is

difficult to articulate these two operations within the

network schema view. Dialog-based interfaces provide

text-based controls that are easy to understand. Our

design uses combo boxes to let analysts specify

the type of nodes they want to perform these

operations on.

Currently, Ploceus supports three types of aggrega-

tion operations: proximity grouping, binning, and

pivoting (Figure 5(a)). Analysts choose the type of

aggregation through radio buttons. Depending on the

properties of nodes selected, some operations may not

be applicable. For example, when nodes have no attri-

butes, pivoting does not make sense. To specify pro-

jection, analysts indicate through combo boxes the

types of nodes to be projected (Figure 5(b)). Both dia-

logs offer previews of how the network will appear

after the transformation, so that analysts can have a

feel of the consequences of their actions.

Figure 5. Dialogs for specifying (a) aggregation and (b) projection.
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Whenever analysts perform an operation, the net-

work view provides immediate feedback in the form of

a node-link visualization of the current network

(Figure 2). Analysts can interactively add selected

nodes and edges to the visualization through a search

query field on the top right corner of the system tool-

bar (Figure 2). Analysts can also switch to a list-based

view where different types of nodes are displayed in

lists and the nodes are sorted by analytical metrics

such as centrality. When the size of the network

exceeds a threshold (currently defined as 450 nodes),

to avoid screen clutter and low system performance,

the node-link visualization will randomly sample and

show a subpart of the network; the list-based visualiza-

tion still shows the entire network.

When slice ’n dice dimensions are specified,

Ploceus shows a grid containing multiple small net-

works in the form of node-link visualizations only with

brushing support (e.g. Figure 14). If the dimension

used contains [many distinct] categorical values, the

large number of subnetworks can lead to usability and

performance problems. In our current design, users

can scroll to see subnetworks hidden from the current

viewport. Systems such as ManyNets28 will be useful

to visualize summary statistics of these subnetworks

for easy comparison.

Visual encoding

The direct manipulation interface supports the articu-

lation of operations that determine the constituent

data of desired networks. Subsequently, it is important

to visualize these networks appropriately. Commonly

used visual variables to encode data dimensions are

color, size, and spatial positions. In particular, spatial

position encoding, or graph layout, plays an important

role in showing prominent visual structures such as

clusters and outliers.

The node-link representation included in Ploceus

supports five layout algorithms: Fruchterman–

Reingold force-directed layout,42 circular layout,

spring layout, the Kamada–Kawai algorithm,43 and

Meyer’s self-organizing layout.44 The effectiveness of

these layout algorithms often depends on the specific

properties of the network being visualized, and ana-

lysts can experiment with different algorithms through

a combo box.

In addition to providing mechanisms for spatial

position encoding, Ploceus intelligently infers the

appropriate visual encodings for the nodes based on

the type of the underlying table dimensions. Studies

have examined how people perform in perceptual tasks

in terms of accuracy when different information types

(quantitative, ordinal, and nominal) are represented

using different visual variables (e.g. area, color, and

density).45,46 Researchers have explored the issue of

automatic graphic encoding46,47 by incorporating

these established design principles into system logic

for effective visualization.

Ploceus draws from these research findings to apply

effective graphic presentations in the visualization of

networks. As noted in the previous section, when ana-

lysts create a new type of node, Ploceus automatically

assigns a new color to that type. In addition, when ana-

lysts designate table column(s) as attributes of nodes,

Ploceus analyzes the type of the column(s) to choose a

visual mapping. Currently, Ploceus supports four types

of column types: integer, float, date, and text (string).

If analysts assign a quantitative column (integer or

float) as node attribute, Ploceus will sum up the quan-

titative values and represent it using node size. For

example, after adding an attribute Size to the people

nodes constructed from LName, FName in Table 1, the

node ‘‘Smith, John’’ will have a value of 381 for the Size

attribute. Figure 6 shows the resulting visualization

based on a larger dataset of the White House visitor

information. When analysts designate a date column

as a node attribute, Ploceus represents dates using

node size by converting date values into the number of

milliseconds since 1 January 1970, 00:00:00 GMT.

Encoding a categorical node attribute is a design

decision requiring more consideration. It is arguably

best practice to use visually distinct colors to represent

a categorical variable.48 Alternative ways of encoding

categories are to use texture or shape.46 In any case,

when there are many unique categorical values, it is

difficult to define enough visually distinct

representations.

In Ploceus, we use color to represent the type of

node as discussed in section ‘‘Design of direct manipu-

lation interface.’’ This initial decision implies that we

may have to use shapes to represent categorical node

attribute values. The number of visually distinct

shapes, however, is limited compared to the available

choice of distinct colors.49 Assuming that analysts usu-

ally will create relatively few node types, we experi-

mented with using shape to encode node type and

using color to encode the categorical attribute values

instead. Figures 7 and 8 show visualizations generated

with this approach. Figure 7 shows a network of the

White House visitors (represented as circles) and visi-

tees (represented by diamonds). Ploceus assigns a

default color to all the nodes. Figure 8 shows the

resulting network after we add an attribute denoting

the meeting location to the visitor nodes, which is rep-

resented using color.

However, informal feedback gathered from visuali-

zation experts on this approach was not positive. They

strongly preferred encoding node type as color instead
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Figure 6. Ploceus visualizes the attribute VisitorCount of the visitor nodes constructed from LastName, FirstName as node
radius (size).

Figure 7. A network of the White House visitors, represented as circles, and visitees, represented by diamonds.
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of shape and suggested that it was potentially confus-

ing to interpret (Figure 8). Since node type can also

be considered as a node attribute and is automatically

generated, it is more essential than an optional node

attribute defined by users. We thus decided to treat

node type as the default node attribute and to con-

tinue encoding it using color. Analysts can define new

attributes by dragging and dropping columns onto the

existing nodes, and if the new attribute is categorical,

it will be color coded and replace the default color

assigned to the node type. Users can change which

node attribute to encode through a pop-up menu.

Figure 9 shows the visitor–visitee network, where visi-

tees are in yellow and the visitor nodes are colored by

the locations of their visits. In our current implemen-

tation, Ploceus only supports one active attribute for a

node type: adding a new attribute will replace any

existing attribute assigned to the node type. This

design decision was made to keep the current imple-

mentation tractable. In future versions of Ploceus, we

plan to remove this constraint.

The study described in this section lays the ground-

work for further investigation of a comprehensive

graph visualization framework. The Polaris formal-

ism21 establishes an algebraic framework for table-

based visualizations that provides effective mapping

from data variables to visual variables. We envision

that a similar framework is possible and is needed to

describe the mappings between attribute relationship

graphs and various graph visualizations. Such a frame-

work will be useful for automated generation of graph

visualizations and may suggest visualization techniques

that have not been explored before.

Edge semantics and construction strategies

With such a set of diverse operations provided, it is

important for analysts to correctly interpret the edge

semantics in the networks created. When a network is

created from a single table, the interpretation is usually

straightforward. For example, connecting a visitor to a

location indicates a visiting relationship, and the edge

weight means frequency of visit. When these two types

of nodes are from different tables, how the connec-

tions are constructed will affect the numerical weights

assigned to the edges and how the edges are inter-

preted. For example, we can directly connect

Program Manager nodes from Table 3(a) and Org nodes

from Table 3(b), and the meaning of connection is

that of managers granting awards to organizations.

The exact meaning of the edge weight, however, is

more subtle. Ploceus will determine that Table 3(c)

Figure 8. Adding ‘‘meeting location’’ as an attribute to the circular visitor nodes and representing the attribute using
color.
Visitee nodes remain as blue diamonds.
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already defines an explicit network relationship of

Researcher3Grant (or GID3PID). This relationship is

used to create edges, and as a result, the edges between

program managers and organizations will have the

semantics of ProgramManager� GID3PID�Org. The

edge between Sylvia Spengler and University of California

Irvine, for example, will have a weight of 3, indicating

that she has awarded grants to researchers from this

organization three times (to Sharad Mehrotra once and

to Padhraic Smyth twice). That is, both the number of

researchers per grant and the number of grants will

have an impact on the edge weight, and the edge weight

is determined by the number of occurrences of the

(GID, PID) pair.

However, this weight may not be at the right level

of abstraction to the analyst, as Sharad Mehrotra and

Padhraic Smyth have collaborated on a grant, and the

program manager has in fact only awarded two grants

to the organization. To let the weight reflect the num-

ber of unique grants awarded by the program manager

to the organization only, we can connect

Program Manager and GID explicitly first and then

connect GID with Orgs. We then do a projection by

connecting a Program Manager with an Org if they

both connect to the same GID. The weight assigned

to the edge between Sylvia Spengler and University

of California Irvine will then be 2, indicating two

grants.

These subtleties of edge construction reinforce that

we can create connections between nodes with great

flexibility and rich semantics. A program manager and

an organization, for example, can be connected by the

grants awarded by the manager to the organization, by

the frequency of awards to researchers from this orga-

nization, or by the researchers from the organization

who receive grants from the manager. This power

comes with the requirement, however, of knowing the

right operations to create the desired semantics. To

help analysts keep track of what they are doing when

connecting nodes from different tables, Ploceus labels

the edge representation in the network schema view,

indicating the semantics of the edges. Figure 10(a)

shows the label for the first case and Figure 10(b)

shows the label for the second case discussed in this

section.

Visualization management and work flow

Another consequence of providing a variety of con-

struction and transformation operations is that it is

now easy to generate a large number of distinct net-

works. Managing the networks thus becomes an

Figure 9. Ploceus visualizes the attribute MettingLoc of the visitor nodes constructed from LName, FName as node color.
The visitee nodes are in yellow, and the visitor nodes are colored by the locations of their visits.
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important issue in the design of the user interface. In

Ploceus, every network generated is associated with a

tab. Analysts can generate new blank networks

through the toolbar ‘‘New Network’’ button, and clos-

ing a tab deletes the network. Within each tab, ana-

lysts can switch between a node-link visualization and

a list-based visualization; they can also tile these two

visualizations side by side.

In the case of slicing and dicing, analysts can right

click on any of the subnetwork and choose ‘‘Analyze in

detail’’ in the pop-up menu. Ploceus will display the

chosen subnetwork in a new tab, where analysts can

examine it more closely and change the representation

to list-based visualization. In this newly created tab,

Ploceus remembers the specific slice ’n dice dimension

values associated with the subnetwork, so analysts can

choose to delete the network while keeping the slice ’n

dice values for further exploration of alternative net-

works from the same perspective. Whenever a new

network is created or deleted, or an existing network is

transformed, the network schema view will update

accordingly to reflect the schema of the network in the

currently active tab. Every network generated can be

saved as a GraphML file and be reloaded into Ploceus.

Figure 11 shows an overview of the work flow in using

Ploceus.

Scenario: analyzing cross-institution
research efforts

To illustrate how to use the direct manipulation inter-

face in conjunction with the visualization and compu-

tational capabilities provided by Ploceus for fast

analytical insights, we present an example analysis in

this section. For a more interactive and complete view

of the analytic process, we refer readers to the accom-

panying video.

In this scenario, we examine the research grants

awarded by the NSF in the IIS division from 2000 to

2003. A subset of the data is presented in Table 3. It is

Figure 10. Edge semantics labels in the network schema
view: (a) the edge weight between a program manager p
and an organization o denotes the number of researchers
from the organization o who have received grants awarded
by p and (b) the edge weight represents the number of
unique grants that a program manager has given to an
organization.

Figure 11. An overview of the work flow in using Ploceus.
Different states of the network are shown in rectangles, and the arrows represent the user interaction to transit between the states.
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a long-standing policy of NSF to encourage interinsti-

tution research collaborations, and it would be of

interest to understand the structure of collaboration

networks at an organizational level. In particular,

researchers from which organizations tend to collabo-

rate with colleagues from other institutions? What fac-

tors might have influenced the collaborations?

The dataset specifies an explicit 2-mode network at

the actor level (PIs/co-PIs with grants). To construct a

network at the organizational level, we drag and drop

the organization column from the person table and the

GID column from the Grant table to the network

schema view and connect these two types of nodes.

Immediately, we have a network showing the connec-

tions between organizations and the grants they have

received. To establish a direct linkage between organi-

zations, we perform a projection on the GID nodes.

Since we are only interested in organizations that have

collaborated with at least one other organization, we

filter out the organization nodes whose degree is 0.

The network shown in Figure 12 results. We can see

that the network is fairly well connected, with a few

very small clusters detached from the main network.

This indicates that the collaboration over the years

is not segregated in isolated clusters, which is a posi-

tive sign. Switching to a list-based view and ranking

the organizations by degrees (Figure 13), we see that

Stanford University, University of California Berkeley,

University of Washington, Columbia University, and

Georgia Tech are the top five cross-institution colla-

borators. It is also interesting to note that Georgia Tech

is the only one in the top 5 that has not collaborated

with the other four organizations in the top 5.

We can continue to explore the collaboration pat-

terns of individual organizations, but to get a more sys-

tematic view of the structure of this network first, it

may make sense to slice and dice it by both the year

and the amount of the award. Assuming that we have

defined how the amount dimension should be aggre-

gated into categories, this gives us the network matrix

in Figure 14. The visualization here seems to conspicu-

ously refute our intuition about the relationships

between grant size and collaboration. We would expect

there would be less collaboration on small grants and

more on larger grants. The visualization tells us instead

that medium-sized grants seem to attract the least col-

laborations, and this observation is fairly consistent

over the 4 years. Considering that there were 972 small

grants awarded in this period compared with 159

medium grants and 133 large grants (shown in the

shelf labels), however, the sheer number of small

grants might just be the main reason that increases the

chance of cross-institution collaborations. Upon closer

examination, we can see that grant size does also play a

part in shaping the structure of collaboration networks.

For small grants, two-organization collaboration is typ-

ical, while for large grants, such collaboration patterns

are much less common. In particular, there is a high

level of collaboration occurring in large grants awarded

in 2003.

To investigate further, we right click in the

2003- large grant cell and choose ‘‘Analyze in detail’’ to

Figure 12. Collaboration between organizations on NSF IIS grants, 2000–2003.
NSF: National Science Foundation; IIS: Information & Intelligent Systems.
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Figure 13. Collaboration between organizations on NSF IIS grants, 2000–2003, in a list representation.
NSF: National Science Foundation; IIS: Information & Intelligent Systems.

Figure 14. Collaboration between organizations on NSF IIS grants, broken down by year and amount.
NSF: National Science Foundation; IIS: Information & Intelligent Systems.
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open a new tab showing that subnetwork for closer

analysis. We can see that University of Colorado

at Boulder (CU Boulder for short) occupies an impor-

tant position in this subnetwork where it connects

multiple local clusters (Figure 15). This observation is

confirmed after running the computational analysis,

where CU Boulder has the highest betweenness central-

ity score, indicating that it is linking many organiza-

tions that are otherwise not linked. One reason for this

is that CU Boulder has collaborated on quite a few dif-

ferent large grants with different organizations in

2003. To see the grants, it has received as well as

the collaborating institutions for each grant, we clear

the current subnetwork while keeping the

2003-large grant slice specification and construct an

organization-name-title network, connecting organiza-

tions with the researchers who are connected with the

grants they receive. We see the specific researchers

from this school as well as the three large grants they

have worked on: emotion in speech, tangible media,

and semantic interpretation (Figure 16).

To look further at the role of program managers in

the collaboration dynamics, we now go back to the

previous tab and replace the date slices with program

manager slices. Noting that William Bainbridge,

Maria Zemankova, and Ephraim Glinert are the top 3

grant awarding managers, we find that a significant

portion of their grants is small grants. After filtering

out noncollaborating institutions, we find that grants

awarded by them do not particularly show greater

activities of collaboration (Figure 17). It is also

obvious from the visualization that Ephraim Glinert has

awarded a number of grants to groups of four institu-

tions (visualized in the form of tetrahedra), and

Stephen Griffin awarded one grant to a group of five

collaborating institutions (in the form of a pentahe-

dron). Such patterns, some of which are highlighted in

Figure 17, are not seen in grants awarded by other

program managers (including those hidden from the

current view and have to be revealed by scrolling).

Extending to one-mode networks

One-mode networks as reflexive relational
tables

The discussion and scenario so far focus on modeling

and visualizing multimodal networks from tabular

data. In these tabular datasets (see Tables 1–3), the

relationship types among the entity types are binary,

that is, the relationships are defined between two dif-

ferent classes of entities. Using the projection operator

provided in Ploceus, we can create one-mode networks

from multimodal networks. The system, however, did

not initially provide direct support for modeling net-

works from tabular data that contain a unary relation-

ship, defining references within one class of entities. In

the ER data model, such a relationship is called a

reflexive or recursive relationship.2

Table 5 shows a sample reflexive relational dataset

of an egocentric social network of the user ‘‘jsmith’’ on

Twitter. Table 5(a) records information about each

Figure 15. CU Boulder is an important actor in the 2003–large grant collaboration network
CU: University of Colorado.
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Figure 16. Large grants received by CU Boulder and other institutions in conjunction in 2003.

Figure 17. Collaboration between organizations on NSF IIS grants, broken down by program manager and amount.
Cliques with more than three nodes are highlighted.
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Twitter user including the account (ID), the date when

the user joined Twitter (Join Date), the number of

tweets designated as favorites by the user (Favorites),

the number of tweets by the user (Tweets), and the

self-described location (Location). Table 5(b) records

the relationships between the Twitter users. We can

consider this dataset to be a one-mode directed network.

Such data are pervasive given the proliferation of

social network sites and social media, and Ploceus

should provide reasonable means to incorporate these

datasets.

Design considerations for modeling and
visualization

Prior study such as PivotGraph29 enables analysts to

perform attribute-based node aggregation in a one-

mode network through combo boxes. Since Ploceus

provides more operations with greater flexibility, sim-

ple user interface controls may not suffice. We thus

focus on extending the current interface design to sup-

port one-mode networks.

Incorporating one-mode networks into Ploceus’

interface and interaction framework turns out to be

relatively straightforward. Following the convention of

representing one-mode networks as separate node and

edge tables,50 the data management view of Ploceus

shows individual columns of the node and edge tables

of a one-mode network, respectively (Figure 18). To

provide a consistent experience in modeling both mul-

timodal and one-mode networks, we continue utilizing

the direct manipulation paradigm. To construct a

Twitter network, for example, analysts follow similar

steps to those outlined in section ‘‘Design of direct

manipulation interface.’’ They first drag and drop the

ID column to the network schema view, and this oper-

ation adds all the Twitter users in the dataset to the

network. In order to create connections, analysts must

drag and drop the ID column again to the network

schema view to create a dummy node. Ploceus recog-

nizes that these two ID nodes in the schema view come

from the same table column, thus treating them as the

same type and assigning the same color. Finally, ana-

lysts click on one of the ID nodes in the schema view

and then drag and release the mouse button on the

other ID node to create edges. Since this is a directed

network, Ploceus supports creating directed edges

when analysts hold down the ‘‘ctrl’’ key while using the

mouse to connect nodes. Ploceus infers the condition

to join the node and edge tables and creates connec-

tions accordingly.

Potentially, there is an alternate way to model the

same network. Instead of adding ID twice to the net-

work schema view, analysts can drag and drop the

Source and Target columns to the schema view, respec-

tively, and connect these two columns. Since Source

and Target are distinct columns, Ploceus will treat the

nodes created from these two columns as having differ-

ent types, which is counterintuitive. Furthermore, the

source and target columns in edge tables are often

numerical identifiers that refer to individual entities in

node tables. Node labels created from these columns

therefore are not intelligible to analysts. Based on these

considerations, we decide not to pursue this approach.

Considering these factors, we make the following

two design decisions. First, if analysts provide the one-

mode data by importing files formatted for graph data

(e.g. GraphML51 and Pajek10), Ploceus parses the

data and populates the node and edge tables. During

this importing process, Ploceus marks the Source and

Target columns in the edge table as hidden, and these

two columns are absent in the data management view

to prevent analysts from this kind of modeling strategy.

Second, if analysts provide the one-mode data by

Table 5. Two tables describing relationships between individuals on Twitter.

(a) Person

ID Join_Date Favorites Tweets Location

jsmith 22 Feb 08 2 24 Silicon Valley
fwong 4 Apr 08 20 231 West Lafayette
jwallace 18 Nov 09 6 120 Finland
ajabbar 25 Jun 10 30 15 Paris, France
suzuki 28 May 09 9 567 San Francisco, mostly

(b) Relationship

Source Target Relationship Relationship_date
jsmith ajabbar Following 11 Jan 11
fwong jsmith Followed 16 Jul 11
jwallace jsmith Mention 1 Nov 11
ajabbar jsmith Followed 2 Sep 10
jsmith fwong Mention 5 Feb 10
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pointing Ploceus to an existing relational database

comprising multiple tables, it is a much more difficult

inferencing problem to identify the Source and Target

columns. In this case, Ploceus allows analysts to aggre-

gate two or more different types of nodes under a self-

defined node type. Similar to the default aggregation

discussed in section ‘‘Operations,’’ this ‘‘aggregate

type’’ operation merges nodes if they share identical

labels and attribute values even when these nodes are

of different types.

Figure 18 shows a resulting visualization of one of

the authors’ own Twitter network. Ploceus represents

the direction of the edges using arrows. If two nodes

are connected to each other in both directions, the two

edges will overlap and potentially cause confusion.

Ploceus thus renders these kinds of edges as quadratic

Bézier parametric curves, so that bidirectional edges

do not overlap and form a distinctive visual pattern

(Figure 18).

All the network operations such as adding attributes

and slicing ’n dicing still also apply for one-mode

directed networks. Figure 19 shows three egocentric

subnetworks generated by slicing ’n dicing the network

in Figure 18 using the (Relationship) dimension in the

edge table: a ‘‘follower’’ network, a ‘‘following’’ net-

work, and a ‘‘mention’’ network. In addition, the

people nodes have an attribute ‘‘Tweets,’’ representing

the number of tweets by each user, encoded as node

size.

Computing connections

Ploceus is powered by the implementation of a formal

framework that systematically specifies how to com-

pute edge connections and assign edge weights. In this

section, we provide an overview of the framework for

readers interested in the implementation details.

Approach and assumptions

Analysts that organize data into structured rows and

columns in tables are implicitly declaring relationships

between data elements. When data elements appear in

the same column, they usually belong to the same type

(e.g. both 142 and 16 are GroupSize in Table 1). When

data elements appear in the same row, they are usually

semantically related, and the specific semantics depend

on the context. When Aarnio, Alicia, and OEOB appear

in a single row of the White House visit logs, this co-

occurrence can be interpreted as a visiting relationship

between two entities: the person Alicia Aarnio visited

the OEOB. When Data Mining of Digital Behavior and

Figure 18. Using Ploceus to construct a one-mode directed Twitter network.
The arrows indicate the directions of ‘‘following’’ on Twitter.
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2241750 appear in the same row of the NSF grant data,

this co-occurrence can be interpreted as a description

of an entity in terms of an attribute: the amount of the

grant titled ‘‘Data Mining of Digital Behavior’’

is$2241750.

Our approach leverages this simple observation that

the meaning of row-based co-occurrence is context sensitive.

It is thus possible to propose a co-occurrence-based

formal framework, which specifies the construction

and transformation of networks, where the meaning of

the graphs created will be subject to users’ interpreta-

tion. Co-occurrence is undirected: when A co-occurs

in a row with B, B also co-occurs with A.

We base our formal framework on the relational

model52 used widely in database theories, with basic

relational algebraic operators such as selection (s),

projection (p), join ( ./ ), and aggregation (F).2 We

make the following three assumptions:

� Each row in a table has a unique identifier;
� Each value in the table cells is atomic, that is, the

value can be classified as nominal, quantitative,

and ordinal, and the value cannot be decomposed

into meaningful smaller units;
� We only focus on creating networks in which there

are no edges connecting one node to itself.

First-order graphs

The entire formal framework is built on the funda-

mental notion of a first-order graph and transformative

operations on the graph. First-order graphs are the

simplest graphs or networks we can construct where

each node and edge is constructed from one (1) sin-

gle row only. In relational model terms, a row is a

tuple, where one or more cell values in that row form

a subtuple, and a table is a relation. When all the data

needed for graph construction are present in a single

table, for any given row in a table, there are two main

ways to construct a node from it. We can create a

node such that its label is a subtuple (e.g. the node

label is ‘‘Smith, John,’’ or a function of a subtuple (e.g.

taking Size as the argument and returning

‘‘large group’’ as the node label if the group size is

above 50, and ‘‘small group’’ otherwise). In a similar

way, we can assign an attribute to a node based on a

subtuple or a function of subtuple.

It is thus a basic idea that in the translation from a

table to a graph, if the construction of a node results

from only a single row of the table, the node is a first-order

node. Two first-order nodes can have the same labels

and attributes, as there may be rows containing identical

values for selected table dimensions. First-order nodes

are created using the relational projection operator.

Figure 19. Slicing ’n dicing the twitter network using the (Relationship) dimension and encoding node size as the number
of tweets.
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Here, we introduce two important concepts, locale

of a node and basis of an edge, in order to compute

connections consistently when multiple tables and

graph transformation are involved. The locale of a

node refers to the set of tuples from which the node is

constructed; the basis of an edge refers to the set of

relational elements (tuples or graph nodes), which are

jointly shared by the locales of two nodes. In actual

implementation, the comparison of locale and com-

puting of edges are realized using the relational selec-

tion and projection operators. The weight of an edge

will be the cardinality of its basis.

In first-order graphs, for example, the locale of a

node will just contain one element, which is the tuple

from which the node is created. As mentioned earlier,

our formalism focuses on establishing relationships

based on co-occurrence in rows. Two first-order nodes

are thus connected if they share the same locale.

Formally speaking

If 9t, locale(n1)= locale(n2)= t, then e(n1, n2)

Our framework considers two possible cases when

first-order nodes and edges are constructed from mul-

tiple tables. First, we can create two sets of first-order

nodes, each constructed from a single table only, and

the edges between the nodes are created by linking two

tables. The notion of co-occurrence is then no longer

limited to one tuple in a relation but is extended to

include two or more tuples in multiple relations

through a join condition specified by the analyst.

Formally

Given locale(n1)=R1 � ti ^ locale(n2)=R2 � tj
If (R1 � ti [ R2 � tj) 2 (R1 ./ uR2), then e(n1, n2)

basis(n1, n2)= f(R1 � ti,R2 � tj)g

In the second and more complex case, a set of first-

order nodes can be constructed such that their labels

come from one table, and their attributes come from

another table. We do not allow constructing node

labels from multiple relations in our formalism for the

purpose of simplicity. The type of join used here in

constructing first-order nodes will be a left-outer-join2

because we want to preserve all the node labels even

when there are no matching attributes. The locale of

the nodes is determined by the table from which the

labels are constructed only.

Higher-order graphs: transformation

First-order graphs often are not at the right level of

abstraction intended for exploration and analysis. For

example, there may be nodes with identical labels that

refer to the same entity. In section ‘‘Operations,’’ we

introduced three transformative operations: aggrega-

tion, projection, and edge weighting. We also men-

tioned that Ploceus aggregates nodes by labels and

attributes automatically. Our formal framework speci-

fies how these transformations affect the edges based

on the notion of a locale introduced in the previous

section. In aggregation, for example, assuming that the

analysts have specified a function of aggregating nodes,

the newly produced nodes will inherit the locales of

the nodes being aggregated

locale(n0)= locale(n1) [ . . . [ locale(nj)

Two new nodes will be connected if the intersection

of their locales is not empty

basis(n01, n
0
2)= locale(n01) \ locale(n02) 6¼ ;

For projection on a two-mode graph with two types

of nodes N and M, for example, two nodes n1, n2 2 N

are connected if they have at least one neighbor in

common in M

9m 2M, e(n1,m) 2 E and e(n2,m) 2 E ) e(n1, n2)

According to this definition, the basis of an edge is

no longer a set of tuples, but a set of nodes

basis(n1, n2)= fm 2Mje(n1,m) 2 E and e(n2,m) 2 Eg

Slicing and dicing are operations at a global level

using dimensions that are orthogonal to those used in

network construction. In our framework, the dimen-

sions used in slicing and dicing serve as query condi-

tions when nodes and edges are created through

relational selection and projection operators.

Extending to one-mode graphs

We initially developed the formal framework without

giving serious consideration to the possibility of

extending to one-mode graphs. Scenarios discussed in

section ‘‘Extending to one-mode networks’’ make a

compelling case to broaden the scope of our frame-

work for the construction of directed graphs from data

tables describing reflexive relationships. Section

‘‘Extending to one-mode networks’’ presents our

design rationale at the interface level; in this section,

we briefly discuss the underlying theoretical logic.

Suppose we want to construct a graph showing the

Twitter relationships between different users from

Table 5. We first create two identical sets of first-order

Person nodes from Table 5(a), called N and N1. To

construct connections between these two sets of
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first-order nodes, we follow the definition discussed in

section ‘‘First-order graphs’’

A node n 2 N is connected to a node n1 2 N1

if locale(n)+ locale(n1) 2 RP ./RP on the condition that

RP � ID=RE � Source and RP � ID=RE �Target

where RP represents the person table and RE repre-

sents the relationship table

Note that here we make a slight modification by

replacing the union operator [ with the concatenation

operator + in locale(n)+ locale(n1). Concatenation

preserves the order of the values in the tuples and does

not remove duplicates, thus ensuring that the order of

tuple values is preserved in edge creation. We can then

assign directions to edges by specifying n nodes as

source nodes and n1 nodes as target nodes. Finally, we

can do an aggregation of n and n1 nodes if they share

the same label.

Implementation

Ploceus is built entirely in Java on the NetBeans Rich

Client Platform.53 It utilizes two major external toolk-

its and libraries: H254 as the underlying database for

relational algebraic queries and JUNG25 as the graph

visualization and computational metrics library. All the

operations supported by Ploceus are performed in real

time. Simple operations such as adding nodes and cre-

ating connections are realized through Structured

Query Language (SQL) queries and are scalable for up

to tens of thousands of rows without significant delay.

More complex operations such as projection and sta-

tistical metrics computation are more computationally

expensive, and the performance can be affected with

large datasets. Every subnetwork in slicing and dicing

is created through a separate thread, and the perfor-

mance bottleneck is at the concurrent handling of

SQL queries by the underlying H2 database. Future

study includes optimization of the implementation of

operations.

Outstanding problems and limitations

Joining multiple tables

When computing connections between columns from

different tables, we currently infer equi-join conditions

by analyzing foreign key constraints between tables

through a Dijkstra shortest-path algorithm.39 We first

construct a graph where the nodes are the columns in

each table, and primary key columns and foreign key

columns are connected. Given two columns to be con-

nected, we then apply the shortest-path algorithm on

this graph.

When a database becomes more complex in terms

of ER modeling, there might be multiple reasonable

equi-join conditions. It is thus the user’s decision to

choose the appropriate join condition. Currently,

Ploceus handles this situation through a dialog, letting

users interactively add relevant tables and connect the

primary keys and foreign keys to specify the desired

join condition (Figure 20). Related systems such as

Tableau22 take a similar approach. Tableau does not

support interactive table joining during the process of

exploration. Instead, at the stage of data import, ana-

lysts need to explicitly join tables to include all the data

columns necessary for exploration. Tableau supports a

richer set of join types and conditions (Figure 21).

Potentially, we can also use more sophisticated

techniques to automatically compute a number of dif-

ferent join conditions and to rank them by inferring

analysts’ intention. The diversity of all the possible

join conditions, however, can hardly be fully captured.

More importantly, all these approaches do not address

a fundamental issue satisfactorily; analysts must have a

precise and good understanding of the concepts of

relational join, primary key, and foreign key. Even if

they understand these concepts well, it is still nontri-

vial to interpret the semantics of edges constructed as

a result of joining multiple tables.

Currently, we do not have a satisfactory solution to

this problem, and we doubt there will be one if the

underlying data model is going to be relational. The

recent emerging NoSQL databases55 might provide an

interesting angle to address this issue. Multiple related

tables in relational databases are a direct consequence

of the design choice to normalize data tables for the

sake of minimizing redundant data representation and

avoiding anomalies in data modification.2 These goals

are not emphasized in NoSQL databases. It would be

interesting to explore if the problem of mandatory join

specification can then be eliminated if we choose

NoSQL data model (key-value pairs instead of data

tables) where the joins have been done a priori, in

some sense eliminating to do them explicitly.

Big/dense graphs

Scalability is an important issue in Information

Visualization and Visual Analytics research. An impli-

cation of the network modeling power provided by

Ploceus is that analysts can easily create both big

graphs with thousands or even millions of nodes and

dense graphs where the number of edges is close to the

maximum possible number of edges. Visualizing and

analyzing these graphs remain great research chal-

lenges. Due to the limited number of pixels available

on computer screens, it is impossible to display all the

nodes without resulting in cluttering or overlapping.
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Figure 20. Users interactively add relevant tables and connect the primary keys and foreign keys to specify the desired
join condition in Ploceus. In this example dataset about IMDB movies, a person (PID) and a movie (MID) can be connected
in two different ways, via the Works On table and the Oscar table, respectively.
IMDB: Internet Movie Database.

Figure 21. Dialog interface in Tableau to join multiple tables.
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Dense edges also cause severe performance issues in

computing graph layout. In Ploceus, the problem of

scale is handled using subnetwork sampling. The inter-

face displays bold messages to remind analysts that

only a subnetwork is shown. Analysts can interactively

add or remove subnetworks through search queries.

A few potential directions exist for future research

on this problem. First, it is worthwhile to investigate

appropriate mechanisms of network sampling. Ploceus

currently samples randomly. Techniques such as the

degree-of-interest functional retrieval56 sound more

promising. Users can pick a focal point and the system

displays a subgraph that is of maximal interest.

Second, we would like to investigate when it is actually

useful to show an overview of the entire network and

to articulate the user tasks involved in these situations.

It may be possible that we can design alternative visual

representations that provide information needed in

these tasks without having to show every single node

and edge. Third, one way to analyze big graphs is to

use a divide and conquer strategy by breaking the

graphs down into meaningful subgraphs. Filtering and

slicing ’n dicing are two reasonable mechanisms to do

so, and they are included in Ploceus. It may be neces-

sary to analyze and compare multiple networks at the

same time. Ploceus now organizes multiple networks

in the form of a matrix, but there are potential read-

ability and usability problems when each of these net-

works contains a large number of nodes and edges.

While systems such as ManyNets28 have taken a first

step in the effort of facilitating visual analysis of multi-

ple networks, more research is needed to understand

and design for multiple network analysis.

Expressive power

In working with sample datasets, we have already iden-

tified situations that point to potential limitations of

the current framework. For example, if we want to cre-

ate a network where two organizations are connected

if they have collaborated on more than two grants

within the past 5 years, the set of operations described

in section ‘‘Operations’’ is not sufficient to express

such semantics of conditional connectivity.

Further study is required to understand the expres-

sive power and limitations of this framework.

Relational algebra, an established framework, is pro-

ven to be equivalent to first-order logic, and the

expressive power of first-order logic is well under-

stood.2 In relational algebra, a set of primitive opera-

tors serves as building blocks for more complex

operators. Since we are investigating a new domain

here, it remains to be seen if the set of operations can

serve as primitives for graph construction and if any

additional operations need to be included for

completeness.

User evaluation

To understand the implications of the algebraic frame-

work and the interface design, we conducted an eva-

luation of the learnability and usability of Ploceus. We

recruited 10 participants, including one undergraduate

student; five graduate students in the areas of com-

puter science, communication design, and ergo-

nomics; and four working professionals in the areas of

software engineering, program managing, and electri-

cal engineering. Eight of them were knowledgeable of

database technologies and SQL queries, and the other

two did not have relevant experience in these technolo-

gies. All of them had never seen or used Ploceus. The

goal of evaluation was to identify qualitative insights

about the way people think about network visualiza-

tion construction and how well Ploceus supports net-

work modeling.

Tasks and procedures

We gave a brief introduction to Ploceus, demonstrated

the main functionalities of the system and showed the

participants how to construct different networks using

the White House Visitor dataset (Table 1 shows sam-

ple rows). We then asked them to create visualizations

and answer the following questions on the NSF data-

set (Table 3 shows sample rows):

� Can you create a visualization showing the colla-

boration pattern between organizations on research

grants?
� Which organization(s) tend to collaborate the most?
� In which year(s) do we see the most cross-

organization collaboration?

We explicitly told the participants that while there

were three tables in the NSF dataset, they could con-

nect any two columns in the data management view

(Figure 2) as if these columns were from the same

table; Ploceus could infer the right join condition in

such simple datasets.

To answer the given questions, the participants

needed to create visualizations in multiple steps as out-

lined in the scenario in section ‘‘Scenario: analyzing

cross-institution research efforts’’: first, add the grant

IDs and the organizations as nodes; then connect these

two types of nodes; perform a projection on the grant

IDs so that the organizations are connected directly to

each other via common grant IDs, and finally slice and

dice the network using the date dimension to break

down the network by year.
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We asked the participants to think aloud, observed

their interaction with the system, recorded their inter-

action history as hand-written notes, and sought their

impressions and comments on the system after they

completed the tasks. Our aim was to gain an under-

standing of how difficult the system was to learn and

use, if there were any problematic design issues, and

how we might be able to address the difficulties experi-

enced by the participants.

Results and analysis

Out of the 10 participants, four did not experience any

difficulty and quickly answered the three questions

accurately; five participants did experiment a few times

before completing the tasks successfully. Only one par-

ticipant failed to discover the correct strategy within

half an hour.

In addition to task performance, we were interested

in understanding the participants’ strategies and think-

ing in action in visualization construction and explora-

tion processes. Inspired by Norman’s seven stages of

action,57 we hypothesized a model of expected action

sequences in the process of visualization construction

and exploration (Figure 22(a)). We anticipated that

using Ploceus to construct network visualizations

would involve the following steps:

1. Interpret task/form intention. When a task is

assigned, users need to be able to understand

what kind of insight is being inquired; when the

task is self-initiated, users form an intention to

look at certain aspects of the data.

2. Simulate appropriate visualizations. Users mentally

simulate and visualize possible representations

that can provide the desired insight.

3. Identify relevant data dimensions. Only a few

selected columns in the dataset are relevant for a

given question, users need to identify which data

dimensions to include in the visualization.

4. Conceive construction strategy. Given a desired

visualization, choose appropriate operations in

the Ploceus framework and understand how these

operations should be combined to create the

visualization.

5. Execute construction sequence. Users execute the

conceived construction strategy and perform each

operation using the Ploceus interface.

6. Interpret visualizations. Finally, assuming that the

construction is successful, users must be able to

accurately interpret the visualizations generated

and provide answers to the given questions.

We used this model as a framework to analyze and

interpret participants’ interaction histories with

Ploceus, while keeping in mind that the model needed

to be validated and refined based on empirical evi-

dence. The model was useful for deductive analysis

and helped us pinpoint difficulties the participants

experienced at various stages of action; on the other

hand, we also identified evidence pointing to possible

refinements of the model.

Figure 22. Models of user interaction with Ploceus for visualization construction and analysis: Model (a) represents the
hypothesized model and model (b) represents the revised version based on qualitative data.
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Difficulties in stages of action. One participant (P3)

appeared to have understood the features of Ploceus

after the demo session and quickly constructed a visua-

lization after we gave her the questions. Interestingly,

she created a network connecting researchers with

organizations and then did a projection on the organi-

zations. When we asked her to describe what the visua-

lization was showing, she realized that she was not

creating a visualization that would answer the ques-

tions. She then created a different network in which

researchers are connected to each other if they come

from the same organizations, and again, this visualiza-

tion was not able to answer the given questions. She

finally realized what went wrong and commented that

‘‘I totally mis-interpreted the question.’’ After careful

consideration of the semantics of the questions, she

successfully created the intended visualization. We

interpret from this process that she had difficulty inter-

preting what questions were being asked.

Some users showed signs of a lack of ability to men-

tally visualize the representation that would answer a

given question. One participant (P4) successfully cre-

ated a one-mode network of collaborating organiza-

tions. To answer the question, ‘‘In which year(s) do we

see the most cross-organization collaboration?,’’ he

added the Date column values as nodes to the visuali-

zation and connected the dates with the organizations.

He tried hard to answer the question by examining the

visualization, but did not have any viable lead.

In general, identifying the relevant data dimensions

was not a major difficulty for most of the users. For

example, to answer Q1 (‘‘create a visualization show-

ing the collaboration pattern between organizations on

research grants’’), all participants were aware that

organizations and grants needed to be part of the

visualization. Three participants (P4, P6, and P7),

however, were uncertain if the name column in the

Person table was relevant. All of them talked about

their logic in the same way: organizations collaborated

if researchers from these organizations had received

grants together. In this sense, researchers were crucial

components in the visualization. As a result, they tried

to connect researchers with grants and to connect

grants with organizations. This approach gave them

no viable lead. After P7 finally constructed the correct

visualization through multiple trials, he commented,

‘‘I didn’t realize the system is so powerful that you can

directly connect organizations with grants together!’’

Even if users know clearly what variables are impor-

tant, they may still experience potential difficulties to

conceive the appropriate steps to construct the visuali-

zation. Previous studies have shown that visualization

construction is a major hurdle for novice users.58 In

observing the participants, we got similar impressions.

P4 wanted to create a one-mode network by

projection, but he forgot to create the connections

between the two classes of nodes first, and the projec-

tion could not be performed. In this case, he could not

conceive a proper sequence of the operations to construct

the visualization.

Most of the users did not have any difficulties in

translating an intention of performing an operation to

an actual action. That is, they were able to pinpoint

the user interface component designed to support a

specific operation. One participant (P4), however,

could not figure out how to perform slicing ’n dicing,

even though we demonstrated this functionality for

him. He commented, ‘‘Although I’ve seen it, I just

completely forgot about it.’’ We acknowledge that the

demonstration session was relatively short, and view-

ing a demonstration is very different from performing

the same action oneself. However, the participant was

confident that he would perform much better if he

had experimented with Ploceus for a longer period of

time.

All users were familiar with node-link diagrams and

had no difficulty in reading the visualizations gener-

ated. The major difficulty surfaced when the size of

the generated network became too large. The layout

algorithms included in Ploceus could be improved.

The force-directed layout, for example, was slow to

stabilize for a network with more than 500 nodes, and

it did not show clusters inherent in a network clearly.

Disconnected subnetworks tended to be pushed to the

boundaries of the visualization, making the graph less

readable.

Where data do not fit model: trial-and-error
strategy. While the preconceived action model

anchored our interpretation of user difficulties in using

Ploceus, upon analyzing user interaction history, we

realized that the model might be an idealized sequence

of visualization construction and exploration. In many

cases, the participants’ actions did not adhere to the

presumed action sequence. The actual construction

processes were quite ad hoc.

For example, while we did find evidence that could

be interpreted as users mentally visualizing their

desired representations (P7, for example, reported that

he wanted to construct a visualization shown in the

demo session, where a two-mode network was pro-

jected into a one-mode network), some participants

did not mentally visualize the appropriate visualiza-

tions before constructing these visualizations. Instead,

they talked about how they would ‘‘try it out’’ when

they decided to perform an operation and commented

they were not sure what the resulting visualizations

would look like. This strategy could be due to unfami-

liarity with Ploceus’ working mechanism but could
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also be an effort of cognitive offloading. Rather than

planning everything in the head, it was easier to put a

thought into action. As P9 mentioned, ‘‘let me just try

to see if this works, if not, I’ll just start over.’’

As a consequence of adopting the trial-and-error strat-

egy, the participants iterated between the stages in a non-

linear fashion, as shown in Figure 22(b). Participant P6,

who failed to create appropriate visualizations within the

given time frame, largely iterated in the loop of ‘‘interpret

question/form intention ! identify data dimensions $
execute construction operations $ interpret visualiza-

tions.’’ A major cause of failure, as we interpreted, was

that he was not able to mentally visualize an appropriate

visualization and could not conceive a proper strategy to

implement the visualization. As a result, he purely relied

on randomly picking the operations.

Role of database knowledge

We speculated before the study that participants with

background knowledge in database technologies, espe-

cially SQL queries, would understand the system bet-

ter and perform the tasks with less difficulty.

Qualitative evidence showed, however, this assump-

tion was too simplistic.

Among the four participants who encountered no

difficulty in completing the tasks, two had taken data-

base classes, and the other two had no knowledge of

SQL. Participant P8 was a software engineer and used

SQL in his projects; yet, he spent a significant amount

of time trying to understand the interface. P8 kept

talking about operations he wanted to perform in

terms of database concepts (e.g. ‘‘How do I do a

GROUP BY?’’). A major difficulty for him, as he

described it, was to map the various SQL queries to

the interactive operations supported in Ploceus. He

even suggested that he would like to see a window

showing the corresponding SQL queries whenever he

interacted with the interface. It was also interesting to

note that in answering Q3 (‘‘In which year do we see

the most collaboration between organizations’’),

although he observed that there were obviously more

links in the ‘‘2003’’ subnetwork, he was not confident

in giving a definite answer and commented that he

would like to see a precise numeric value to confirm

the answer. For a database expert like P8, whose

thinking was deeply rooted in SQL queries, the learn-

ing curve might be higher than nonexpert users.

General impression and comments

All the participants liked Ploceus, especially the inter-

face design. Although some participants considered

constructing network visualizations nontrivial, they

still agreed that the interface was consistent and the

learning curve was not too high. The affordance of the

network schema view was clear to all the participants,

and all of them strongly favored this view.

The participants also identified features in Ploceus

that they had difficulties in understanding and inter-

preting. More than one participant mentioned that the

affordances of slicing ’n dicing shelves were not imme-

diately clear to first-time users, but they acknowledged

that after some interaction the design began to make

sense for them. One participant also mentioned that

the meaning of the numerical value following each sli-

cing ’n dicing value was not clear. For example, when

we slice ’n dice an organization collaboration network

by year, a slice will be displayed as ‘‘2000 (282),’’ as

shown in Figure 14, indicating the number of grants

given in the year 2000.

One participant was so interested in Ploceus that he

asked for some extra time after the given tasks to per-

form some open-ended exploration. One of the ques-

tions he wanted to know was who got the most money

from NSF. He tried to create a network connecting

researchers with amounts and then tried to order the

amount nodes by value in the list view. While this is

certainly one way to answer the question, a bar chart

might be a more effective visual representation than a

network visualization. In this regard, the user should

have picked systems such as Tableau22 instead of

Ploceus. This observation is consistent with what

Kobsa59 has noted in his evaluation study of early

InfoVis systems: users tend to use the default system

or setting given to them, and it is difficult for them to

initialize a change in the mindset to explore alternative

representations or system settings.

Conclusion and future study

In this article, we have focused on the system design

and formal framework aspects of performing network-

based visual analysis and argued that our approach

provides new capabilities beyond the existing study.

Our contributions include the following:

� Drawing from prior study, we present a conceptual

framework specifying possible operations for con-

structing and transforming networks from multi-

variate tabular data. Most of these operations are

meaningful to end users who are not necessarily

database experts.
� A specification of the operations based on the rela-

tional model and an implementation of the frame-

work in relational algebra.
� The design and implementation of a system based

on the framework, which integrates data manipula-

tion with visual exploration processes.
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� A discussion of the nature of high-level tasks in

network-based visual analysis that may have impli-

cations for future study on visual analytics.
� A qualitative evaluation that proposes a model of

how users construct and explore network visualiza-

tions using Ploceus.

This research lays the foundation for further inves-

tigations. First, there are certain features we would like

to add, such as pinpointing specific data rows/columns

from visualizations that explicitly illustrate the prove-

nance of the data and integrating analytic techniques

on data tables such as log-linear modeling on top of

the network analysis techniques presented here. It also

makes sense to provide a visual representation of

users’ interaction history. Such a construction history

can be useful for nonexpert users to understand the

consequences of their actions. As mentioned in section

‘‘Expressive power,’’ it is worthwhile to understand the

expressive power and limitations of our framework in

greater detail and perhaps to examine how this frame-

work can be applied and extended for compound

graphs. Since the user evaluation presented here

involves controlled tasks for a specific dataset, we

would also like to gain further insights on the system’s

ecological validity in longer-term case studies.
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