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ABSTRACT

Tabular data are pervasive. Although tables often describe multi-
variate data without explicit network semantics, it may be advanta-
geous to explore the data modeled as a graph or network for anal-
ysis. Even when a given table design conveys some static network
semantics, analysts may want to look at multiple networks from
different perspectives, at different levels of abstraction, and with
different edge semantics. We present a system called Ploceus that
offers a general approach for performing multi-dimensional and
multi-level network-based visual analysis on multivariate tabular
data. Powered by an underlying relational algebraic framework,
Ploceus supports flexible construction and transformation of net-
works through a direct manipulation interface, and integrates dy-
namic network manipulation with visual exploration for a seamless
analytic experience.

Index Terms: H.5.2 [Information Systems]: Information Inter-
faces and Presentation—User Interfaces;

1 INTRODUCTION

Network visualizations, often in the form of node-link diagrams,
are an effective means to understand patterns of interaction between
entities, to discover entities with interesting roles, and to identify in-
herent groups or clusters of entities. Many existing approaches to
network visualization and analysis assume a given graph and static
network semantics. During an analysis process, however, selecting,
filtering, clustering or computing metrics over a static network is
not always enough. Analysts may want to construct new networks
and transform existing ones to explore the data from different per-
spectives and at different levels of abstraction.

The goal of our research is to provide a general approach for
performing multi-dimensional and multi-level network-based vi-
sual analysis. We choose tabular data as the input data model con-
sidering the dominance of spreadsheets and relational databases in
current data management practices. As we discuss below, tabular
data may or may not contain explicit network semantics, and its
multivariate nature implies the need of dynamic network modeling
for greater analytic power.

1.1 Forms of Tabular Data

Tabular data come in many forms, each unique in its schematic and
semantic structure depending on the technology used and the data
owner’s goal. The term “tabular data” is thus fairly broad and can
be interpreted as either multivariate data or attribute relationship
graphs. We give examples of different types of tabular data in this
section, and will base our discussion on these examples throughout
the rest of the paper.

Single tables are pervasive in the form of spreadsheets and
comma-separated value (csv) files. For example, Table 1 shows
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visits to the White House. For each visit, it records the last and first
name of the person arranging the visit (LName, FName), the type of
visit (Type), the date (Date) and location (Loc) of visit, the size of the
visiting group (Size), and the visitee’s name (Visitee). Such tabular
data are essentially multivariate data where rows represent entities
or facts and columns represent entity attributes or other entities. In
multivariate data, explicit network semantics are typically absent.

ID LName FName Type Date Loc Size  Visitee

Dodd Chris VA 6/25/09 WH 2018 POTUS

Smith John VA 6/26/09 WH 237  Office Visitors

Smith John AL 6/26/09 OEOB 144  Amanda Kepko
Hirani =~ Amyn VA 6/30/09 WH 184  Office Visitors

Keehan  Carol VA 6/30/09 WH 8 Kristin Sheehy

Keehan  Carol VA 7/8/09 OEOB 26 Daniella Leger

[ N N O R S

Table 1: A table of sample visitor information to the White House

Multiple linked tables are pervasive in the form of relational
databases, although the same tables can also be described in spread-
sheets. In a relational database, the ER Model (Entity-Relationship
Model [16]) typically underlies database design. Each row in a
table represents a fact that corresponds to a real-world entity or
relationship. For example, Table 2(a) represents facts about em-
ployees in a company, and Table 2(b) represents facts about de-
partments in the same company. The two tables are linked by a
one-to-many DEPARTMENT — EMPLOYEE relationship type. That is,
one department can have multiple employees, but one employee
can only work for one department. One-to-many relationships are
typically captured by foreign keys in a relational database [18]. In
this case, Dpt in the EMPLOYEE table is a foreign key, referencing
the DEPARTMENT table.

(a) EMPLOYEE

ID FName LName Bdate Dpt
1 John Smith 1965-01-10 2
2 Franklin ‘Wong 1952-04-09 3
3 Jennifer Wallace 1970-10-23 3
4 Ahmad Jabbar 1945-11-02 1

(b) DEPARTMENT

ID Name City State Latitude Longitude

1 Headquarters Los Angeles CA 34.05 -118.24
Administration San Jose CA 37.34 -121.89

3 Research Houston TX 29.76 -95.36

Table 2: Two tables describing employees and the departments they
work for

Another type of relationship in the ER model is the many-to-
many relationship, and it is captured by a separate relationship ta-
ble [18]. For example, Table 3(a) represents selected facts about
research grants awarded by the National Science Foundation (NSF)
in the Information & Intelligent Systems division, and Table 3(b)
represents facts about researchers. The two tables are linked by Ta-
ble 3(c), which represents a many-to-many “work-on” relationship.
That is, one researcher can receive multiple grants, and one grant
can involve multiple researchers too.



(a) GRANT

GID Title Program Program Amount
Manager

1 Data Mining of Digital Statistics Sylvia 2241750
Behavior Spengler

2 Real-time Capture, Man- Information Maria 430000
agement and Reconstruc- Technology Zemankova
tion of Spatio-Temporal Research
Events

3 Statistical Data Mining  ITR for Na-  Sylvia 566644
of Time-Dependent Data tional Prior- Spengler
with Applications in Geo- ities
science and Biology

(b) PERSON (c) WorkOn

PID Name Org Person Grant  Role

1 Padhraic University of Cali- 1 1 PI
Smyth fornia Irvine 2 1 CoPI

2 Sharad University of Cali- 2 2 PI
Mehrotra fornia Irvine 1 3 PI

Table 3: Tables describing researchers and the grants they receive

These tabular data in multiple linked tables are essentially atz-
tribute relationship graphs with explicit network semantics. Table
2 describes connections between employee and department entities.
Similarly, Table 3 is a graph specifying the connection between two
types of entities, researcher and grant, each with its own attributes.

An OLAP (Online Analytical Processing) database, unlike
spreadsheets and relational databases, is not built for low-level
atomic operations such as insertion and update but for analytical
purposes. It uses data cubes for better performance in operations
such as slice/dice and roll-up/drill-down. The analytical power of
OLAP, however, is not necessarily suitable for network-based anal-
ysis because it focuses only on inherent relationships between en-
tity attributes, and assumes different entities are mutually indepen-
dent [15]. As aresult, the OLAP framework is not directly relevant
for our purpose, and in this paper we focus on spreadsheets and
databases which provide a basis for an alternative network-centric
framework.

1.2 Analytical Gap and Semantic Distance

For visualization designers and analysts, spreadsheets and
databases naturally become the infrastructure upon which higher
level visual analysis is accomplished. As discussed in the previous
section, multivariate data in the form of single tables do not contain
explicit network semantics; even when multiple tables are used to
describe a graph, analysts’ own notions of a meaningful network
may render different graph structures. First of all, the concept of an
entity is often multi-level nested. An attribute of an entity may be
treated as an entity in its own right. For example, in Table 3(a), each
row represents a grant entity with its own attributes such as title and
program manager. A program manager can be in turn treated as an
entity. In fact, it is often difficult to determine whether something
is an entity or an attribute in data schema design [13]. Secondly,
the same two entities can be connected via different semantics. In
Table 1 for example, two people can be connected if they visited
the same location, have the same last name, or started their visits
on the same day.

The multivariate nature of tabular datasets thus implies oppor-
tunities for asking interesting questions that can be answered with
network visualizations, and it is worthwhile to examine the nature
of such questions more closely. Given the dataset in Table 3 for
example, a grant applicant may want to understand the hidden dy-
namics, if any, in the process of awarding grants to choose an ap-
propriate application strategy. NSF officials will want to understand

the impact of the IIS program on the awardee social networks and
on the creation and diffusion of intellectual property to evaluate
funding policy. Many questions can thus be asked, for instance:

o [Q1] Is there a strong affiliation between program managers
and research institutions? i.e. Do certain program managers
tend to give awards to a few selected institutions only?

e [Q2] From which organizations do researchers tend to have
more cross-institution collaborations?

One possible way to answer Q1 is to construct a network visu-
alization (Figure 1(a)) where an organization and a program man-
ager are linked if the manager has awarded at least one grant to
researchers in that organization. We can define the edge weight, to
be the total grant amount as shown in the figure, or to be the number
of grants awarded. Analysts can provide initial answers to Q1 by
inspecting the overall connectivity of the network. If the network
consists of multiple small subnetworks that are disconnected from
each other, there is evidence that a strong affiliation does exist. It
is also likely that there is no disconnection within the network, but
certain organizations or managers occupy more central roles. Sta-
tistical measures will enhance visual inspection to provide a more
precise assessment.
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(a) (b)
Figure 1: Visual models for answering questions on the NSF data set

Similarly, to answer Q2, we can create a network visualization
where two organizations are connected by an edge if there is at least
one collaboration between any researchers from these two organi-
zations. Figure 1(b) shows this network semantics, where the edge
weight is based on the frequency of collaboration. Applying an ap-
propriate layout algorithm to this network visualization and using
statistical measures such as betweenness centrality will likely reveal
important organizations that are “gatekeepers” connecting different
subgraphs.

These questions are examples of high-level analysis tasks [11].
These high-level tasks have two major characteristics. First, they
cannot be answered satisfactorily by simple “yes” or “no” or some
precise values and metrics. Analysts can define measures to quan-
tify “affiliation strength”, for example in the case of Q1, but such
numbers are only meaningful at the level of specific manager-
institution pairs. Network visualizations are useful to show global
structures in the network. Secondly, these high-level tasks are se-
mantically rich and context dependent, and cannot be described ab-
stractly or captured a priori because they usually only emerge dur-
ing the process of exploration.

These high level tasks can be compared with low-level tasks
[25, 30], which are usually topology-based or attribute-based.
Topology-based tasks include finding neighbors, counting degree,
finding shortest paths and identifying clusters; attribute-based tasks
include finding nodes with specific attributes, or finding nodes con-
nected by particular type of edges. Many of these low-level tasks
are well defined questions with clear-cut answers, and they can of-
ten be effectively answered using search or database queries with-
out much visual representation.
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Figure 2: The Ploceus system interface with a data management view on the top left, a network schema view on the bottom left, and a network

visualization view on the right.

Supporting only low-level tasks creates analytic gaps in address-
ing real analytic and sense-making goals. Many high level tasks
require analysts to go beyond manipulating a static network and to
actively construct and simulate a model [26]. Figure 1(a) and 1(b)
are illustrations of analysts’ desired model based on their analytical
questions. To effectively support model-based reasoning, analysts
must be able to quickly choose the relevant entities and relation-
ships for model construction. The model will be subject to constant
refinement and revision, where new variables and relationships are
introduced and old ones transformed or discarded. Dynamic artic-
ulation of fluid network semantics is thus necessary, and the multi-
variate nature of many tabular datasets provides a fertile playground
for performing this kind of model-based reasoning.

With these considerations in mind, we present Ploceus!, a sys-
tem designed to support flexible network-based visual analysis of
tabular data. Our focus is not on representation and interaction
techniques for visually analyzing a given network - a number of
commercial and research systems have been designed for this pur-
pose [2, 3, 5, 10, 21, 23, 28]. Rather, we aim to address flexible
and rapid construction and manipulation of networks from tabu-
lar data. The power of Ploceus is based upon a formal framework
that systematically specifies operators for network construction and
transformation and the implementation of these operators in rela-
tional algebra. A direct manipulation interface is coupled with the
formalism to help analysts articulate the desired network semantics.

2 PLOCEUS: OVERVIEW

Ploceus provides a direct manipulation interface for fast construc-
tion and transformation of networks, and shows immediate visual
feedback on the network being created. Model construction and vi-
sual exploration hence are interweaved in a seamless manner. Plo-
ceus contains three major views: a data management view on the

IPloceus is a kind of weaver bird that can build sophisticated nests.

top left, a network schema view on the bottom left, and a network
view on the right (Figure 2). The data management view shows in-
formation about the columns in each table in a dataset; the network
schema view is a sandbox-like environment where users can con-
struct and manipulate networks at a conceptual level; the network
view shows the corresponding network visualization and updates
whenever the network schema is modified.

2.1 Operations

Ploceus currently supports the following types of operations. We
describe these operations at a functional level in this section, and
discuss the precise mechanisms of accomplishing these operations
in Section 4.

o Create Nodes: Transform the values in one or more columns
into node labels. For example, we can construct a set of nodes
representing the people visiting the White House from all the
rows in Table 1, and the labels of the nodes are created from
the LName and FName columns. This results in four nodes:
“Dodd, Chris”, “Smith, John”, “Hirani,Amyn”, and “Keehan, Carol”.

e Add Attributes: Transform the values in one or more
columns as attributes of existing nodes. For example, we can
add an attribute AccessType to the people nodes constructed
from LName, FName earlier. The node “Dodd, Chris” will have
the value “VA” for the AccessType attribute. Ploceus supports
adding columns as attributes from a different table too. For
example, we can add Role from Table 3(c) as an attribute for
the Name nodes constructed from Table 3(b). Ploceus only
allows a node to have one value for any particular attribute,
so there will be two “Sharad Mehrotra” nodes in this case, one
having a PI role and the other having a CoPI role.

e Create Connections: Create edges between existing nodes.
For example, we can connect LName, FName nodes and Loc




nodes from Table 2 to see the visiting patterns by the visi-
tors to the various locations. We can also connect nodes cre-
ated from different tables, e.g. ProgramManager nodes from Ta-
ble 3(a) and Org nodes from Table 3(b). When multiple ta-
bles are involved, Ploceus determines how the tables should
be joined by analyzing the foreign key constraints between
the tables through the Dijkstra shortest-path algorithm. In this
case, the two tables are joined through Table 3(c). Ploceus
computes whether there should be an edge between any two
nodes as well as assigns a weight to that edge. When multiple
ways of joining tables are possible, users can specify the join
condition through a dialog.

Assign Weights: Assign numerical weights to edges. Ploceus
by default assigns a weight to each edge created, indicating
the frequency of co-occurrence between the nodes in the data
(Section 2.3 and 4 discuss edge weights in greater depth). For
example, if we connect LName, FName nodes and Loc nodes
from Table 1, by default the edge between “Dodd, Chris” and
WH has a weight of 1, indicating this person has visited the
White House once in this dataset. We may instead want to
represent the connection strength by the number of people he
has brought on his visits, and assign the column Size as the
edge weight. The edge between “Dodd, Chris” and WH will have
a weight of 2018. Only a single column can be assigned as
edge weight, and that column must be quantitative.

Project: Connect two nodes if they both are connected to
the same node of a different type. Projection is a commonly
used technique to reduce modalities of a network for analy-
sis [24]. In a two-mode (i.e. there are two types of nodes)
LName,FName - Loc network, for example, if “Dodd,Chris” is
connected to “WH” (i.e. Chris Dodd visited the White House),
and if “Keehan,Carol” is connected to “WH” also, after pro-
jecting LName,FName nodes on Loc nodes, “Dodd,Chris” and
“Keehan, Carol” are connected. Figure 3(a) shows this process.
The weight of edges after projection reflects the unique num-
ber of Loc nodes being projected.

Aggregate: Group multiple nodes and treat them as one node.
Ploceus automatically aggregates nodes with identical labels
if no attributes are specified for these nodes, and aggregates
nodes with identical labels and values if attributes are speci-
fied for the nodes. As a result, we have four distinct LName,
FName nodes from Table 1, while there are actually six rows
in the table.

Other types of aggregation include but are not limited to the
following.

e Pivoting: PivotGraph [35] terms this operation roll-up.
Given LName, FName nodes with the attribute AccessType,
we can aggregate people nodes when they share the same
AccessType. The pivoting process is visualized in Figure
3(b). The resulting graph shows the locations that are typi-
cally visited for different types of visits.

e Binning: for nodes whose labels or attributes are de-
rived from quantitative columns, value based aggrega-
tion is possible. One type of value based aggregation
is binning: we divide the range from the minimum to
the maximum attribute values into bins. For example,
we can categorize Amount nodes created from Table 3(a)
into three bins: “small” if Amount <=500k, “medium” if
500k < Amount <= 1200k, and “large” if Amount > 1200k.

e Proximity grouping: group nodes in a pair-wise manner if
they have values close to each other. For example, from Ta-
ble 2(b) we can create City nodes with attributes Latitude and
Longitude. We can then aggregate every pair of City nodes

into one for which the distance between them, computed
from the latitude and longitude information, is within 500
miles. This operation is combinatorial: if there are four
cities, and every one is within 500 miles to each of the

(4=1
other three, proximity grouping will produce ) k=16
k=1

nodes. Proximity grouping is useful when combined with
projection, so that we can, for example, create a network of
employees whose workplaces are within 500 miles to each
other (to do this, connect employee names with cities, ag-
gregate cities, then project employees on cities).

e Slice ’n Dice: Divide a network into sub-networks based
on selected columns. For example, given that we have con-
structed a LName,FName - Visitee network from Table 1, we
may want to see how the visiting pattern is related to the lo-
cations of visits by dividing the network using Loc slices. We
will then have two subnetworks, one representing the visit-
ing patterns at the White House (“wH”), and the other at the
Old Executive Office Building (“OEOB”). Slice 'n dice thus
enables analysts to create and organize meaningful snapshots
of a big network based on different perspectives. The values
in columns used for slicing and dicing are either categorical
or can be categorized. When hierarchical categories exist, an-
alysts can slice and dice at multiple granularities, e.g. for a
date column: day — week — month — quarter — year.

Dodd, Chris Dodd, Chris Smith, John
Smith, John WH
Hirani, Amyn OEOB

1
Keehan, Carol Hirani, Amyn  Keehan, Carol

(a) Project
Dodd, Chris AL @—® oEoB
Smith, John WH
Smith, John WH
A OEOB
Hirani, Amyn
Keehan, Carol VA
(b) Pivot

Figure 3: Project and Pivot Operations. In (a) the visitor nodes do
not have attributes, and in (b) the visitor nodes have attribute “Type”

In addition to these higher-level operations for creating and
transforming networks from data tables, Ploceus supports interac-
tion with individual nodes such as selecting, filtering, moving, hid-
ing, showing and expanding (showing neighbors of a node), interac-
tion with the visualization in the form of zooming, panning, adding
new visualizations and deleting existing visualizations, applying
various network layout algorithms and analytical measures such as
node degree, shortest path, betweenness centrality and closeness
centrality. These features, though not the main focus of our re-
search, are essential for integration with the above operations for
seamless data transformation and visual exploration.

2.2 Design of Direct Manipulation Interface

The major design challenge in building Ploceus is how to reduce
articulatory distance, i.e. assuming the analysts want to perform
some operations, what is an intuitive way for them to communicate
the intent to the system.

We chose the direct manipulation paradigm as our main design
approach. To create nodes, analysts drag and drop selected columns
from the data management view to an empty area in the network
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Figure 4: Direct manipulation interfaces for various operations: a)
add attributes, b) create connections, and c) slice 'n dice.

schema view. Each drag-and-drop action creates a type of node,
and the system assigns a color to that type. Dragging and dropping
columns on top of an existing node type add those columns as an
attribute to the node type (Figure 4(a)).

Given two types of nodes, analysts create connections between
them by clicking on one type of nodes and dragging the mouse to
the other type of nodes in the network schema view (Figure 4(b)).
This action draws an edge between the two that takes effect when
the mouse button is released. To designate a quantitative column
as edge weights, analysts drag and drop the column over the edge
representation in the network schema view. Ploceus supports slic-
ing and dicing for up to 2 dimensions, designated as the horizontal
and vertical axes in the visualization. Analysts specify the orien-
tation of the slices (horizontal or vertical) by dropping columns to
the appropriate shelf (Figure 4(c)). These static figures give a basic
idea of the interactivity of the interface, but we refer readers to the
accompanying video for a more complete and richer view of the
direct manipulation.

Analysts specify aggregation and projection, two transformative
operations on existing networks, using dialog interaction rather than
drag and drop. Currently Ploceus supports three types of aggre-
gation operations: proximity grouping, binning and pivoting (Fig-
ure 5(a)). Analysts choose the type of aggregation through radio
buttons. Depending on the properties of nodes selected, some op-
erations may not be applicable. For example, when nodes have no
attributes, pivoting does not make sense. To specify projection, an-
alysts indicate through combo boxes the types of nodes to be pro-
jected (Figure 5(b)). Both dialogs offer previews of how the net-
work will appear after the transformation, so that analysts can have
a feel of the consequences of their actions.

Whenever analysts perform an operation, the network view pro-
vides immediate feedback in the form of a node-link visualization
of the current network (Figure 2). Analysts can interactively add se-
lected nodes and edges to the visualization through a search query
field on the top right corner of the system toolbar (Figure 2). An-
alysts can also switch to a list-based view where different types of
nodes are displayed in lists and the nodes are sorted by analytical
metrics such as centrality. When the size of the network exceeds
a threshold (currently defined as 450 nodes), to avoid screen clut-
ter and low system performance, the node-link visualization will
randomly sample and show a subpart of the network; the list-based
visualization still shows the entire network.
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Figure 5: Dialogs for specifying a) aggregation and b) projection.

When slice 'n dice dimensions are specified, Ploceus shows a
grid containing multiple small networks in the form of node-link
visualizations only with brushing support (e.g. Figure 8). If the
dimension used contains large number of categorical values, the
large number of subnetworks can lead to usability and performance
problems. This is one design issue that we would like to investigate
in future work.

2.3 Edge Semantics and Construction Strategies

With such a set of diverse operations, it is important for analysts
to correctly interpret the edge semantics in the networks created.
When a network is created from a single table, the interpretation
is usually straight-forward: e.g. connecting a visitor to a location
indicates a visiting relationship, and the edge weight means fre-
quency of visit. When these two types of nodes are from different
tables, how the connections are constructed will affect the numeri-
cal weights assigned to the edges and how the edges are interpreted.
For example, we can directly connect Program Manager nodes from
Table 3(a) and Org nodes from Table 3(b), and the meaning of con-
nection is that of managers granting awards to organizations. The
exact meaning of the edge weight, however, is more subtle. Plo-
ceus will determine that Table 3(c) already defines an explicit net-
work relationship of Researcher x Grant (or GID x PID). This relation-
ship is used to create edges, and as a result, the edges between
program managers and organizations will have the semantics of
ProgramManager — GID x PID — Org. The edge between Sylvia Spengler
and University of California Irvine, for example, will have a weight of 3,
indicating that she has awarded grants to researchers from this or-
ganization three times (to Sharad Mehrotra once and to Padhraic Smyth
twice). That is, both the number of researchers per grant and the
number of grants will have an impact on the edge weight.

This weight however may not be at the right level of abstraction
to the analyst, as Sharad Mehrotra and Padhraic Smyth have collabo-



rated on a grant, and the program manager has in fact only awarded
two grants to the organization. To let the weight reflect the number
of unique grants awarded by the program manager to the organiza-
tion only, we can connect Program Manager and GID explicitly first,
then connect GID with Orgs. We then do a projection by connect-
ing a Program Manager With an Org if they both connect to the same
GID. The weight assigned to the edge between Sylvia Spengler and
University of California Irvine Will then be 2, indicating two grants.
These subtleties of edge construction reinforce that we can cre-
ate connections between nodes with great flexibility and rich se-
mantics. A program manager and an organization, for example,
can be connected by the grants awarded by the manager to the or-
ganization, by the frequency of awards to researchers from this or-
ganization, or by the researchers from the organization who receive
grants from the manager. This power comes with the requirement,
however, of knowing the right operations to create the desired se-
mantics. To help analysts keep track of what they are doing when
connecting nodes from different tables, Ploceus labels the edge rep-
resentation in the network schema view, indicating the semantics of
the edges. Figure 6(a) shows the label for the first case and Figure
6(b) shows the label for the second case discussed in this section.

organization

.
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progmgr/. or:ﬁa nization
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Figure 6: Edge semantics labels in the network schema view

2.4 Visualization Management and Work Flow

Another consequence of providing a variety of construction and
transformation operations is that it is now easy to generate a large
number of distinct networks. Managing the networks thus becomes
an important issue in the design of the user interface. In Ploceus,
every network generated is associated with a tab. Analysts can gen-
erate new blank networks through the toolbar “New Network™ but-
ton, and closing a tab deletes the network. Within each tab, analysts
can switch between a node-link visualization and a list-based visu-
alization; they can also tile these two visualizations side by side.

In the case of slicing and dicing, analysts can right click on any of
the subnetwork and choose “Analyze in detail” in the pop-up menu.
Ploceus will display the chosen subnetwork in a new tab, where an-
alysts can examine it more closely and change the representation
to list-based visualization. In this newly created tab, Ploceus re-
members the specific slice "n dice dimension values associated with
the subnetwork, so analysts can choose to delete the network while
keeping the slice "n dice values for further exploration of alternative
networks from the same perspective. Whenever a new network is
created or deleted, or an existing network is transformed, the net-
work schema view will update accordingly to reflect the schema of
the network in the currently active tab. Saving and reloading net-
works are yet to be implemented.

3 SCENARIO: ANALYZING CROSS-INSTITUTION RE-
SEARCH EFFORTS

To illustrate how to use the direct manipulation interface in con-
junction with the visualization and computational capabilities pro-
vided by Ploceus for fast analytical insights, we present an example
analysis in this section. For a more interactive and complete view
of the analytic process, we refer readers to the accompanying video.

In this scenario we examine the research grants awarded by the
NSF in the Information & Intelligent Systems division from 2000

to 2003. A subset of the data is presented in Table 3. It is a long-
standing policy of NSF to encourage inter-institution research col-
laborations, and it would be of interest to understand the structure
of collaboration networks at an organizational level. In particular,
researchers from which organizations tend to collaborate with col-
leagues from other institutions? What factors might have influenced
the collaborations?

The data set specifies an explicit 2-mode network at the actor
level (PIs/co-PIs with grants). To construct a network at the or-
ganizational level, we drag and drop the organization column from
the Person table and the GID column from the Grant table to the
network schema view, and connect these two types of nodes. Im-
mediately we have a network showing the connections between or-
ganizations and the grants they have received. To establish a di-
rect linkage between organizations, we perform a projection on
the GID nodes. Since we are only interested in organizations that
have collaborated with at least one other organization, we fil-
ter out the organization nodes whose degree is 0. The network
shown in Figure 7 results. We can see that the network is fairly
well connected, with a few very small clusters detached from the
main network. This indicates that the collaboration over the years
is not segregated in isolated clusters, which is a positive sign.
Switching to a list-based view and ranking the organizations by
degrees, we see that Stanford University, University of California Berkeley,
University of Washington, Columbia University and Georgia Tech are the top
5 cross-institution collaborators (please refer to the video). It is also
interesting to note that Georgia Tech is the only one in the top 5 that
has not collaborated with the other four organizations in the top 5.
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Figure 7: Collaboration between organizations on NSF IS grants,
2000-2003

We can continue to explore the collaboration patterns of individ-
ual organizations, but to get a more systematic view of the struc-
ture of this network first, it may make sense to slice and dice it
by both the year and the amount of the award. Assuming that we
have defined how the amount dimension should be aggregated into
categories, this gives us the network matrix in Figure 8. The vi-
sualization here seems to conspicuously refute our intuition about
the relationships between grant size and collaboration: we would
expect there would be less collaboration on small grants and more
on larger grants. The visualization tells us instead that medium-
sized grants seem to attract the least collaborations, and this ob-
servation is fairly consistent over the four years. Considering that
there were 972 small grants awarded in this period compared with
159 medium grants and 133 large grants (shown in the shelf la-
bels), however, the sheer number of small grants might just be the
main reason that increases the chance of cross-institution collabora-
tions. Upon closer examination, we can see that grant size does also
play a part in shaping the structure of collaboration networks. For
small grants, two-organization collaboration is very typical, while
for large grants, such collaboration patterns are much less common.



In particular, there is a high level of collaboration occurring in large
grants awarded in 2003.
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Figure 8: Collaboration between organizations on NSF IIS grants,
broken down by year and amount

To investigate further, we right click in the 2003-large grant
cell and choose “Analyze in detail” to open a new tab show-
ing that subnetwork for closer analysis. We can see that
University of Colorado at Boulder (CU Boulder for short) occupies an im-
portant position in this subnetwork where it connects multiple local
clusters (Figure 9). This observation is confirmed after running the
computational analysis, where CU Boulder has the highest between-
ness centrality score, indicating that it is linking many organizations
that are otherwise not linked. One reason for this is that CU Boulder
has collaborated on quite a few different large grants with differ-
ent organizations in 2003. To see the grants it has received as well
as the collaborating institutions for each grant, we clear the cur-
rent subnetwork while keeping the 2003-large grant slice specifica-
tion, and construct an organization-name-title network, connecting or-
ganizations with the researchers who are connected with the grants
they receive. We see the specific researchers from this school as
well as the three large grants they have worked on: emotion in
speech, tangible media and semantic interpretation (Figure 10).
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Figure 9: CU Boulder is an important actor in the 2003-large grant
collaboration network

To look further at the role of program managers in the collab-
oration dynamics, we now go back to the previous tab and re-
place the date slices with program manager slices. Noting that
William Bainbridge, Maria Zemankova, and Ephraim Glinert are the top 3
grant awarding managers, we find that a significant portion of their

University of Washington

Mark Gross ‘Columbia University

ITR:  Computationally-Enhanced Construction Ki

Julia Hirschberg
Bryan Pellom
Michael Eisenberg Jennifer Venditi-Ramprashad
University of Golorado al Boulder
ST ITR:  Recognizing and Understanding Emotion in
Wayne Ward Laura Michaelis
Martha Paimer
Elizabeth Shriberg

ITR: Domain-independent Semantic Interpretation

SRl Intemational
Daniel Jurafsky Daniel Gildea

Stanford University University of Rochester

Charles Fillmore University of California-Berkeley

Figure 10: Large grants received by CU Boulder and other institutions
in conjunction in 2003

grants is small grants. After filtering out non-collaborating institu-
tions, we find that grants awarded by them do not particularly show
greater activities of collaboration (Figure 11). It is also obvious
from the visualization that Ephraim Glinert has awarded a number of
grants to groups of 4 institutions (visualized in the form of tetra-
hedra), and Stephen Griffin awarded one grant to a group of 5 collab-
orating institutions (in the form of a pentahedron). Such patterns,
some of which are highlighted in the figure, are not seen in grants
awarded by other program managers.
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Figure 11: Collaboration between organizations on NSF 1IS grants,
broken down by program manager and amount

4 COMPUTING CONNECTIONS

The logic underlying Ploceus is built on top of a formal framework
that systematically specifies how to compute edge connections and
assign edge weights. We will present a detailed treatment of the
framework at the level of formal definitions and proofs in a partner
paper. Here, we provide an overview of the framework.

4.1 Approach and assumptions

Analysts that organize data into structured rows and columns in ta-
bles are implicitly declaring relationships between data elements.
When data elements appear in the same column, they usually be-
long to the same type (e.g. 142 and 16 are both GroupSize in Ta-
ble 1). When data elements appear in the same row, they are usu-
ally semantically related, and the specific semantics depend on the
context. When Aarnio, Alicia and OEOB appear in a single row of
the White House visit logs, this co-occurrence can be interpreted
as a visiting relationship between two entities: the person Alicia
Aarnio visited the Old Executive Office Building (OEOB). When



Data Mining of Digital Behavior and 2241750 appear in the same row of
the NSF grant data, this co-occurrence can be interpreted as a de-
scription of an entity in terms of an attribute: the amount of the
grant is $2241750.

Our approach leverages this simple observation that the meaning
of row-based co-occurrence is context-sensitive. It is thus possible
to propose a co-occurrence based formal framework which spec-
ifies the construction and transformation of networks, where the
meaning of the graphs created will be subject to users’ interpreta-
tion. Co-occurrence is undirected: when A co-occurs in a row with
B, B co-occurs with A too. The meaning of connections derived
from co-occurrence, however, can be interpreted as having a sense
of direction. For example, the meaning of the connection between
a person and a location is a visit by the person fo the location.

We base our formal framework on the relational model [17] used
pervasively in database theories, with basic relational algebraic op-
erators such as selection (o), projection (), join (X) and aggrega-
tion (%) [18]. We make the following three assumptions:

e Each row in a table has a unique identifier.

e Each value in the table cells is atomic, i.e. the value can be
classified as nominal, quantitative and ordinal, and the value
cannot be decomposed into meaningful smaller units.

e We only focus on creating networks in which there are no
edges connecting one node to itself.

4.2 First-order Graphs

The entire formal framework is built on the fundamental notion of a
first-order graph and transformative operations on the graph. First-
order graphs are the simplest graphs or networks we can construct
where each node and edge is constructed from one (1) single row
only. In relational model terms, a row is a fuple, where one or more
cell values in that row form a subtuple, and a table is a relation.
When all the data needed for graph construction are present in a
single table, for any given row in a table, there are two main ways
to construct a node from it. We can create a node such that its label
is a subtuple (e.g. the node label is “Smith,John”, or a function of a
subtuple (e.g. taking Size as the argument, and returns “large group”
as the node label if the group size is above 50, and “small group”
otherwise). In a similar way, we can assign an attribute to a node
based on a subtuple or a function of subtuple.

It is thus a basic idea that in the translation from a table to a
graph, if the construction of a node results from only a single row
of the table, the node is a first-order node. Two first-order nodes can
have the same labels and attributes, as there may be rows containing
identical values for selected table dimensions. First-order nodes are
created using the relational projection operator.

Here we introduce two important concepts: locale of a node and
basis of an edge in order to compute connections consistently when
multiple tables and graph transformation are involved. The locale of
anode refers to the set of tuples from which the node is constructed;
the basis of an edge refers to the set of relational elements (tuples or
graph nodes) which are jointly shared by the locales of two nodes.
In actual implementation, the comparison of locale and computing
of edges are realized using the relational selection and projection
operators. The weight of an edge will be the cardinality of its basis.

In first-order graphs for example, the locale of a node will just
contain one element: the tuple from which the node is created. As
mentioned earlier, our formalism focuses on establishing relation-
ships based on co-occurrence in rows. Two first-order nodes are
thus connected if they share the same locale. Formally speaking,

If 3¢, locale(ny) = locale(ny) =t, then e(ny,ny).

Our framework considers two possible cases when first-order
nodes and edges are constructed from multiple tables. First, we
can create two sets of first-order nodes, each constructed from a
single table only, and the edges between the nodes are created by

linking two tables. The notion of co-occurrence is then no longer
limited to one tuple in a relation, but is extended to include two or
more tuples in multiple relations through a join condition specified
by the analyst. Formally,

Given locale(n;) = Ry.t; A locale(ny) = Ry.t,
If (R1.t; U Ry.1j) € (R Mg Ry), then e(ny,ny).
basis(nl,nz) = {(Rl.li,Rz.[j)}.

In the second and more complex case, a set of first-order nodes
can be constructed such that their labels come from one table, and
their attributes come from another table. We do not allow construct-
ing node labels from multiple relations in our formalism for the
purpose of simplicity. The type of join used here in constructing
first-order nodes will be a left-outer-join [18] because we want to
preserve all the node labels even when there are no matching at-
tributes. The locale of the nodes is determined by the table from
which the labels are constructed only.

4.3 Higher-order Graphs: Transformation

First-order graphs often are not at the right level of abstraction in-
tended for exploration and analysis. For example, there may be
nodes with identical labels that refer to the same entity. In Section
2.1 we introduced three transformative operations: aggregation,
projection and edge weighting. We also mentioned that Ploceus
aggregates nodes by labels and attributes automatically. Our for-
mal framework specifies how these transformations affect the edges
based on the notion of a locale introduced in the previous section.
In aggregation, for example, assuming the analysts have specified
a function of aggregating nodes, the newly produced nodes will in-
herit the locales of the nodes being aggregated:

locale(n') = locale(n)) U...Ulocale(n;).

Two new nodes will be connected if the intersection of their locales
is not empty:

basis(n,ny) = locale(n}) N locale(n,) # 0

For projection on a two-mode graph with two types of nodes N
and M, for example, two nodes ny,ny € N are connected if they
have at least one neighbor in common in M:

Im e M, e(ny,m) € E & e(ny,m) € E = e(ny,ny)

According to this definition, the basis of an edge is no longer a set
of tuples, but a set of nodes:

basis(ny,ny) ={meM | e(n;,m) €E & e(npy,m) € E}

Slicing and dicing are operations at a global level using dimen-
sions that are orthogonal to those used in network construction. In
our framework, the dimensions used in slicing and dicing serve as
query conditions when nodes and edges are created through rela-
tional selection and projection operators. Ploceus currently infers
equi-join conditions by analyzing foreign key constraints between
tables through a Dijkstra shortest-path algorithm. This feature is
useful when we are creating graphs from multiple tables, or the
slicing/dicing dimensions and node/edge construction columns are
from different tables. When multiple equi-joins are possible, or the
desired join condition is not based on equality, analysts can specity
the condition through a dialog window.

4.4 Expressive Power and Limitations

In working with sample datasets we have already identified situa-
tions that point to potential limitations of the current framework.
For example, if we want to create a network where two organi-
zations are connected if they have collaborated on more than two
grants within the past five years, the set of operations described in
Section 2.1 is not sufficient to express such semantics of conditional
connectivity.



Further work is required to understand the expressive power and
limitations of this framework. Relational algebra, an established
framework, is proven to be equivalent to first-order logic, and the
expressive power of first-order logic is well understood [18]. In
relational algebra, a set of primitive operators serves as building
blocks for more complex operators. Since we are investigating a
new domain here, it remains to be seen if the set of operations can
serve as primitives for graph construction and if any additional op-
erations need to be included for completeness.

5 RELATED WORK

A number of systems in the form of toolkits [22, 27] or executables
[1, 2, 3,5, 10, 12, 28] are available for analyzing a given graph.
These systems vary in features and provide visualizations, compu-
tational metrics or both. NodeTrix [23] explores how these different
network representations can be integrated for the same underlying
graph data. ManyNets [19] looks at visually exploring multiple net-
works. PivotGraph [35] provides attribute-based transformation of
multivariate graphs. Creating and transforming network semantics
from data tables are not the main focus of these systems.

NodeXL [21] integrates with Microsoft Excel to enable users to
easily import, transform, visualize and analyze network data. The
data transformation power, however, is primarily provided by Excel
and decoupled from visual exploration.

Systems such as Table Lens [29], FOCUS [32], InfoZoom [31],
Polaris [34] and Tableau [4] visualize tabular data in the form of
line charts, bar charts, scatter plots or space filling cells for an-
alyzing distribution pattern and frequency aggregation. None of
these systems pays special attention to the potential of imposing
user-defined relationships between attribute values in the form of
networks. Our motivation behind designing Ploceus does resonate
with the approaches taken by Polaris and Tableau, which advocate
the need for analysts to rapidly change the data they are viewing
and how the data are visualized, as well as the need to integrate
data transformation and visual abstraction in a seamless process.

Jigsaw [33] builds the semantics of relationships into the sys-
tem design based on a simple assumption: entities are identified
purely lexically, and entities appearing in the same documents are
connected. This approach, originally designed for unstructured text
documents, can be extended to tabular data such as spreadsheets:
one row in a table is equivalent to the notion of a document. The co-
occurrence based definition allows flexible explorations of entity re-
lationships without having to explicitly specify the nodes and edges,
but since the fundamental connection model is centered around doc-
uments/rows, the connections between table columns are less di-
rect. Jigsaw also has limited data transformation support due to its
indiscrimination between nominal and quantitative entities.

Ploceus focuses on extracting trees and graphs from data tables,
and variants of this idea have been explored in prior work. The at-
tribute relationship graphs approach establishes direct connections
between table column values and integrates the graph with cross-
filtered views [36]. The need for retrieving and publishing selected
information on the web leads to work that models databases as vir-
tual graphs [20] and provides XML document interfaces of rela-
tional data for web applications [14]. The Grammar of Graphics
discusses an algebraic framework for mapping tables to directed
trees [37]. Commercial systems such as Touchgraph Navigator [9]
and Centrifuge [6] provide interface for creating attribute relation-
ship graphs from data tables. While Ploceus is not the first system
that investigates the connection between data tables and graphs, our
approach differs from existing work in two ways: first, we offer a
comprehensive construction and transformation framework that in-
tegrates diverse operations in a flexible yet systematic manner; and
secondly, the design of the system tightly couples data transforma-
tion with visual exploration.

Finally, in the area of data mining and knowledge discovery,

there is a body of literature dealing with mining insights from graph
data. While most of the work focuses on automatic mining tech-
niques, the graph OLAP [15] is of particular relevance to our work.
Inspired by the traditional relational model based OLAP, the graph
OLAP proposes a framework for performing multi-dimensional and
multi-level operations on a graph. In particular, the approach speci-
fies an informational dimension based OLAP, which corresponds to
our notion of slice ’n dice, and topological dimension based OLAP,
which corresponds to our notion of aggregation. Our work focuses
more on the visual and interactive part of the mining process, and
our framework is arguably broader because we do not require the
data to contain explicit network semantics.

6 IMPLEMENTATION

Ploceus is built entirely in Java on the NetBeans Rich Client Plat-
form [8]. It utilizes two major external toolkits and libraries: H2
[7] as the underlying database for relational algebraic queries, and
JUNG [27] as the graph visualization and computational metrics
library. All the operations supported by Ploceus are performed in
real time: simple operations such as adding nodes and creating con-
nections are realized through SQL queries and are scalable for up
to tens of thousands of rows without significant delay. More com-
plex operations such as projection and statistical metrics computa-
tion are more computationally expensive and the performance can
be affected with large data sets. Every subnetwork in slicing and
dicing is created through a separate thread, and the performance
bottleneck is at the concurrent handling of SQL queries by the un-
derlying H2 database. Future work includes optimization of the
implementation of operations.

7 CONCLUSION AND FUTURE WORK

In this paper, we have focused on the system design and formal
framework aspects of performing network-based visual analysis,
and argued our approach provides new capabilities beyond exist-
ing work. Our contributions include the following:

e A conceptual framework specifying possible operations for
constructing and transforming networks from multivariate
tabular data.

e A specification of the operations based on the relational model
and an implementation of the framework in relational algebra.

e The design and implementation of a system based on the
framework, which integrates data manipulation with visual
exploration processes.

e A discussion of the nature of high-level tasks in network-
based visual analysis that may have implications for future
work on visual analytics.

This research lays the foundation for further investigations. First,
there are certain features we would like to add, such as pinpointing
specific data rows/columns from visualizations and integrating an-
alytic techniques on data tables such as log-linear modeling on top
of the network analysis techniques presented here. As mentioned
in Section 4.4, it is worthwhile to understand the expressive power
and limitations of our framework in greater detail, and perhaps to
examine how this framework can be applied and extended for com-
pound graphs. We would also like to put the system into real users’
hands, and gather feedback to refine our framework and design.
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